
www.hp-see.eu

HP-SEE
Introduction to Parallel Computing: The

Message Passing and Shared Memory

Todor Gurov

Assoc. Professor

IICT-BAS

gurov@bas.bg

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

OTLINE

 Overview of parallel computing

 What is parallel computing?

 Why/who use a parallel computing?

 Concepts and technology/ parallel terminology

 Communication/Load Balancing/Granuarity

 Parallel Computer Memory Architectures

 Parallel programming models

 Parallel programming paradigms

 Message passing (MPI)

 Shared memory (OpenMP)

 General Consideration and Conclusion

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 2

Overview Parallel Computing

 Traditionally, software
has been written for
serial computation:
 To be run on a single

computer having a single
Central Processing Unit
(CPU);

 A problem is broken into a
discrete series of
instructions.

 Instructions are executed
one after another.

 Only one instruction may
execute at any moment in
time.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 3

What is Parallel Computing?

 parallel computing is the simultaneous
use of multiple compute resources to
solve a computational problem.
 To be run using multiple CPUs

 A problem is broken into discrete parts that can
be solved concurrently

 Each part is further broken down to a series of
instructions

 The compute resources can include:

 A single computer with multiple processors;

 An arbitrary number of computers connected
by a network;

 A combination of both.

 The computational problem usually
demonstrates characteristics such as the
ability to be:

 Broken apart into discrete pieces of work
that can be solved simultaneously;

 Execute multiple program instructions at any
moment in time;

 Solved in less time with multiple compute
resources than with a single compute
resource.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 4

Why Use Parallel Computing?

 Save time and/or money: Parallel clusters can be built
from cheap, commodity components.

 Solve larger problems:

 "Grand Challenge" problems
(en.wikipedia.org/wiki/Grand_Challenge) requiring
PetaFLOPS and PetaBytes of computing resources.

 Web search engines/databases processing millions of
transactions per second.

 Provide concurrency

 Multiple computing resources can be doing many things
simultaneously

 Use of non-local resources (EGEE/EGI infrastructure)

 Limits to serial computing

 Transmission speeds

 Limits to miniaturization

 Economic limitations

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 5

Who use Parallel Computing

 Statistics on parallel
computing users -
from top500.org

 Sectors on the Figure
may overlap

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 6

Concepts and Technology

 von Neumann Architecture
 Named after the Hungarian mathematician

John von Neumann who first authored the
general requirements for an electronic
computer in his 1945 papers.

 Since then, virtually all computers have
followed this basic design.

 Flynn's Classical Taxonomy
 This classification is widely used, in use since

1966.

 Flynn's taxonomy distinguishes multi-
processor computer architectures according to
how they can be classified along the two
independent dimensions of Instruction and
Data. Each of these dimensions can have only
one of two possible states: Single or
Multiple.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov 2010 7

S I S D

Single Instruction, Single Data

S I M D

Single Instruction, Multiple

Data

M I S D

Multiple Instruction, Single

Data

M I M D

Multiple Instruction, Multiple

Data

Some General Parallel Terminology

 Task /Parallel Task /Serial or parallel Execution

 Pipelining/Shared Memory /Distributed Memory

 Symmetric Multi-Processor (SMP)

 Communications/Synchronization

 Granularity (coarse, fine)

 Observed Speedup /Parallel Overhead

 Massively Parallel /Embarrassingly Parallel

 Scalability /Latency

 Multi-core Processors /Cluster Computing

 Supercomputing / High Performance Computing

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 8

Parallel Computer Memory
Architectures

 Shared Memory

 Distributed Memory

 Hybrid Distributed-Shared Memory

Machine architecture dictates the programming model

 Parallel Programming Models

 Message Passing Model

 Shared Memory Model

 Threads Model

 Data Parallel Model

 Other Models

 Hybrid:

 Single Program Multiple Data (SPMD):

 Multiple Program Multiple Data (MPMD):

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 9

Shared Memory architecture

 General Characteristics
 ability for all processors to access all memory as global address space.

 Multiple processors operate independently but share the same memory
resources.

 Changes in a memory location effected by one processor are visible to
all other processors.

 Uniform Memory Access (UMA):
 Most commonly represented today by Symmetric Multiprocessor (SMP)

machines

 Identical processors

 Non-Uniform Memory Access (NUMA):
 Often made by physically linking two or more SMPs

 Not all processors have equal access time to all memories

 Advantages:
 Global address space provides a user-friendly programming perspective

to memory

 Data sharing between tasks is both fast and uniform due to the
proximity of memory to CPUs

 Disadvantages:
 Primary disadvantage is the lack of scalability between memory and

CPUs

 Expense: it becomes difficult and expensive to design and produce
shared memory machines with ever increasing numbers of processors.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 10

Shared Memory (UMA)

Shared Memory (NUMA)

Distributed Memory architecture

 General Characteristics:
 Distributed memory systems require a communication network

to connect inter-processor memory

 Processors have their own local memory. Memory addresses in
one processor do not map to another processor

 Synchronization between tasks is likewise the programmer's
responsibility.

 The network "fabric" used for data transfer varies widely, though
it can be as simple as Ethernet.

 Advantages:
 Memory is scalable with number of processors. Increase the

number of processors and the size of memory increases
proportionately.

 Each processor can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency.

 Cost effectiveness: can use commodity, off-the-shelf processors
and networking.

 Disadvantages:
 The programmer is responsible for many of the details

associated with data communication between processors.

 It may be difficult to map existing data structures, based on
global memory, to this memory organization.

 Non-uniform memory access (NUMA) times

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 11

Hybrid Distributed-Shared Memory
architecture

 The largest and fastest computers in the world today
employ both shared and distributed memory
architectures.

 The shared memory component is usually a cache
coherent SMP machine. Processors on a given SMP can
address that machine's memory as global.

 The distributed memory component is the networking of
multiple SMPs. SMPs know only about their own memory
- not the memory on another SMP. Therefore, network
communications are required to move data from one SMP
to another.

 Current trends seem to indicate that this type of memory
architecture will continue to prevail and increase at the
high end of computing for the foreseeable future.

 Advantages and Disadvantages: whatever is common to
both shared and distributed memory architectures.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 12

Communications

 When you DON’T need communications
 Some types of problems can be decomposed and executed in parallel with

virtually no need for tasks to share data.

 These types of problems are often called embarrassingly parallel because
they are so straight-forward.

 When you DO need communications
 Most parallel applications are not quite so simple, and do

require tasks to share data with each other.

 Factor to consider
 Cost of communications

 Latency vs. Bandwidth

 latency is the time it takes to send a minimal (0 byte) message from point
A to point B. Commonly expressed as microseconds.

 bandwidth is the amount of data that can be communicated per unit of

time. Commonly expressed as megabytes/sec or gigabytes/sec.
 Visibility of communications

 Synchronous vs. asynchronous communications

 Scope of communications

 Efficiency of communications

 Overhead and Complexity

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 13

Load Balancing

 Load balancing refers to the practice of distributing work among
tasks so that all tasks are kept busy all of the time. It can be
considered a minimization of task idle time.

 Load balancing is important to parallel programs for performance
reasons. For example, if all tasks are subject to a barrier
synchronization point, the slowest task will determine the overall
performance.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 14

Granularity

 Computation / Communication Ratio:

 Fine-grain Parallelism:
 Relatively small amounts of computational work are done between

communication events

 Low computation to communication ratio

 Facilitates load balancing

 Coarse-grain Parallelism:
 Relatively large amounts of computational work are done between

communication/synchronization events

 High computation to communication ratio

 Implies more opportunity for performance increase

 Harder to load balance efficiently

 Which is Best?
 The most efficient granularity is dependent on the algorithm and the

hardware environment in which it runs.

 In most cases the overhead associated with communications and
synchronization is high relative to execution speed so it is advantageous to
have coarse granularity.

 Fine-grain parallelism can help reduce overheads due to load imbalance.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 15

Parallel programming models

 Distributed memory systems (I)

 Programmer uses “Message Passing” in order to sync

 processes and share data among them

 Message passing libraries

 MPI

 PVM

 Shared memory systems (II)

 Thread based programming approach

 Compiler directives (openMP)

 Message passing may also be used

 Programming models on hybrid architectures / Hybrid
memory systems (III)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 16

(I) Parallel Programming
Models: Distributed Memory

 Each processing element P has its own
local memory hierarchy

 Local memory is not remotely accessible
by other processing elements

 Processing elements are connected by
means of a special network

 Architecture dictates:

 Data and computational load must be
explicitly distributed by the programmer

 Communication (data exchange) is
achieved by messages

 Probably the oldest paradigm. Several
variants: PVM (Parallel Virtual

 Machine), MPI (Message Passing Interface -
ultimate winner)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 17

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/distmem.gif

Message Passing Interface

 Message passing model is a process which may be defined as a
program counter and an address space

 Each process may have multiple threads sharing the same address
space

 Message Passing is used for communication among processes

 synchronization

 data movement between address spaces

 MPI is a message passing library specification

 not a language or compiler specification

 no specific implementation

 Source code portability

 SMPs

 clusters

 heterogenous networks

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 18

Types of communication

 Initialization, Finalization and Synchronization calls

 Point-to-Point calls

 data movement

 Collective calls

 data movement

 reduction operations

 synchronization

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 19

What is need to know

 MPI_Init

 MPI_Comm_size (get number of processes)

 MPI_Comm_rank (gets a rank value assigned to each
process)

 MPI_Send (cooperative point-to-point callused to send
data to receiver)

 MPI_Recv (cooperative point-to-point call used to receive
data from sender)

 MPI_Finalize

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 20

“HelloWord!” using MPI

#include <stdio.h>

#include "mpi.h"

int main(int argc, char **argv)

{ int me, nprocs, namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

MPI_Get_processor_name(processor_name, &namelen);

printf("HelloWorld! I'm process %d of %d on %s\n", me, nprocs,

processor_name);

MPI_Finalize();

}

 Mpicc ./helloc -o hello.out

 mpirun –n 8 ./hello.out /* the executable hello run iteractivly on 8 CPUs */

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 21

"HelloWorld!" program that illustrates the basic MPI calls

necessary to startup and end an MPI program.

Starting and exiting the MPI
environment

 MPI_Init

 C style: int MPI_Init(int *argc, char ***argv);

 accepts argc and argv variables (main arguments)

 F style: MPI_INIT (IERROR)

 Almost all Fortran MPI library calls have an integer return code

 Must be the first MPI function called in a program

 MPI_Finalize

 C style: int MPI_Finalize();

 F style: MPI_FINALIZE (IERROR)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 22

Communicators

 All mpi specific communications take place with respect
to a communicator

 Communicator: A collection of processes and a
context

 MPI_COMM_WORLD is the predefined communicator of
all processes

 Processes within a communicator are assigned a
unique rank value

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 23

A few basic considerations

 How many processes are there?

 (C) MPI_Comm_size(MPI_COMM_WORLD, &size);

 (F) MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

 Which one is which?

 (C) MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 (F) MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 The rank number is between 0 and (size - 1)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 24

Sending and receiving messages

 What is contained within a
message?

 message data

 buffer

 count

 datatype

 message envelope

 source/destination rank

 message tag (tags are used to
discriminate among messages)

 communicator

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 25

Collective communications

 All processes within the specified communicator
participate

 All collective operations are blocking

 All processes must call the collective operation

 No message tags are used

 Three classes of collective communications

 Data movement

 Collective computation

 Synchronization

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 26

Examples of collective operations

 int MPI_Bcast(void *buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm);

 Parameters
 buffer [in/out] starting address of buffer (choice)

 count [in] number of entries in buffer (integer)

 datatype [in] data type of buffer (handle)

 root [in] rank of broadcast root (integer)

 comm [in] communicator (handle)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 27

Examples of collective operations

 int MPI_Reduce(void *sendbuf, void
*recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm);

 Parameters
 sendbuf [in] address of send buffer (choice)

 recvbuf [out] address of receive buffer (choice,
significant only at root)

 count [in] number of elements in send buffer (integer)

 datatype [in] data type of elements of send buffer
(handle)

 op [in] reduce operation (handle)

 root [in] rank of root process (integer)

 comm [in] communicator (handle)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 28

Examples of collective operations

 int MPI_Gather(void *sendbuf, int sendcnt,
MPI_Datatype sendtype, void *recvbuf, int recvcnt,
MPI_Datatype recvtype, int root, MPI_Comm
comm);

 Parameters
 sendbuf [in] starting address of send buffer (choice)

 sendcount [in] number of elements in send buffer (integer)

 sendtype [in] data type of send buffer elements (handle)

 recvbuf [out] address of receive buffer (choice, significant only
at root)

 recvcount [in] number of elements for any single receive
(integer, significant only at root)

 recvtype [in] data type of recv buffer elements (significant only
at root) (handle)

 root [in] rank of receiving process (integer)

 comm [in] communicator (handle)

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 29

Examples of collective
operations

 All MPI functions can be find on
web:http://mpi.deino.net/mpi_functions/index.htm

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 30

MPI Basic Datatypes

MPI Datatype C datatype

MPI_CHAR Signed char

MPI_SHORT Signed short int

MPI_INT Signed int

MPI_LONG Signed long int

MPI_UNSIGNED_CHAR Unsigned char

MPI_INSIGNED_SHORT Unsigned short int

MPI_INSIGNED Unsigned int

MPI_UNSIGNED_LONG Unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE Long double

MPI_BYTE

MPI_PACKED

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 31

(II) Parallel Programming Models:
Shared Memory

 Processing elements share
memory (either directly or
indirectly)

 Communication among processing
elements can be achieved by
carefully

 reading and writing in main
memory

 Data and load distribution can be
hidden from the programmer

 Messages can be implemented in
memory as well (MPI)

 Programming Model. OpenMP:
Directives and Assertions

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 32

http://www.mhpcc.edu/training/workshop/parallel_intro/gif/sharemem.gif

Thread parallel programming model
(OpenMP)

 OpenMP is based on a fork - join model

 Master – worker threads

 Use of directives and pragmas within source code

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 33

Memory issues

 Threads have access to the same address

 space

 Programmer needs to define

 local data

 shared data

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 34

Threads and thread teams

 A threads is a process – an instance of a program +its
data

 Each thread can follow its own flow of control through a
program

 Threads can share data with other threads, but also have
private data.

 Threads communicate with each other via the shared
data.

 A thread team is a set of threads which cooperate on a
task.

 The master thread is responsible for coordinating the
team.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 35

Parallel region

 The parallel region is the basic parallel construct in
OpenMP

 A parallel region dafines a section of a program

 Program begins execution on a single thread (the master
thread).

 When the first parallel region is encountered,the master
thread creates a team of threads

 Every thread executes the statements which are inside
the parallel region.

 At the end of the parallel region, the master thread waits
for the other threads to finish, and continues executing
the next statements.

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 36

OpenMP Example: HelloWorld

#include <iostream>

#include (omp.h>

using homespace std;

main()

{

#pragma omp parallel

Printf(”hello from thread %d\n”,omp_get_thread_num());

}

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 37

(III) Programming models
on hybrid architectures

 Pure MPI: Remember SMP supports MPI as well.
Only MPI processes across the machine

 Hybrid MPI/OpenMP: OpenMP inside SMP nodes
and MPI across the node interconnection network

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 38

Hybrid Architectures: “Clusters” of SMPs

Hybrid Architectures: Examples

 IBM Blue Gene series

 1024 SMP nodes per rack

 4 cores per SMP node, 2-4
Gbytes per node

 Hundreds of racks to reach
3PFlops

 IBM p6 575 (Huygens)

 16 dual core procs per node

 32 corés on SMP node, 128-256
Gbytes per node

 14 SMP nodes per rack, tens of
racks

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 39

Hybrid systems programming
hierarchy

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 40

General Consideration

 Compute everything every where

 Use routines such as Allreduce

 Perhaps the value only really needs to know on the master

 Often easiest to make P a compile-time constant

 may not seem elegant but make coding much easier

 Put definition in an include file

 A clever Makefile can reduce the need for recompilation

 Only recompile routines that define arrays rather than just use
them

 Pass array bounds as arguments to all other routines

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 41

Parallelisation and optimisation

 Some parallel approaches may be simple
 But not necessary optimal for performance

 Case study example is very simple due may be to 1D decompoition

 But not particullary efficient for large Parallelism

 Some people write incredibly complicated code

 Step back and ask: what do I actually want to do?

 Is there an existing MPI routine or collective communications?

 Keep running your code

 On a number of input data sets

 With a range of MPI processes

 If scaling is poor

 Find out parallel routines are the bottlenecks

 Much easier with a separate comms library

 If performance is poor

 Work on the serial code

 Return to parallel issues later onHP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 42

Conclusion

 Run on a variety of machines

 Keep it simple

 Maintain a serial code

 Don’t assume all bugs are parallel bugs

 Find a debugger you like

HP-SEE Regional Training – Sofia, Bulgaria 29-30, Nov. 2010 43

