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0 Learn about basic features of CUDA C

0 Compilation process and compute capabilities
0 Hierarchical thread organization
0 Mapping of threads to data indices
0 Interface for GPU memory management
0 Interface for launching parallel execution
1 Also some advanced features
0 Memory organization on the GPU
0 Usage of CUDA streams and asynchronous execution
0 External libraries for CUDA
0 Profiling tools and performance measuring
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Heterogenous execution

0 Host - a CPU which executes the main program in serial
0 Device - a GPU which executes parallel portions of code

0 Memory spaces are completely separate

0 All allocations and data movement - responsibility of the
programmer
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Code for GPUs

a CUDA C program is written as follows:
0 Serial parts in host C code
0 Parallel parts in device SPMD kernel C code

0 Source code is compiled separately

0 Standard C/C++ code for the CPU

0 Device code in PTX - compiled just-in-time for the exact device
1 Use the nvcc for compilation

0 PTX is an assembly format

0 Specific binary code for the GPU devices
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Device compute capability

a0 NVIDIA GPU devices are based on different cores

0 Each new generation changes architecture and adds some new
features (Fermi, Kepler, ...)

0 All use the same programming model even when the internal
organization changes a lot
0 Compute capability used to show which features GPUs
support

0 Major number - entirely new architecture
0 2 for Fermi, 3 for Kepler

0 Minor number - incremental upgrades to an architecture
0 3.5 for newest Tesla cards, includes some new features
d Sometimes new features can be significant
0 1.3 added support for double precision arithmetic
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0 Inherent variables for each thread in a kernel launch

0 blockbim, blockIdx for blocks in a grid
0 threadIdx for threads in a block
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Thread mapping to data

iIndices

0 Both the grid and each thread block can be three-
dimensional

0 Predefined data type dim3 to hold grid and block dimensions
0 Parameter for the kernel launch

0 Example: a 2D matrix

float matrix[N][N];

int my_col blockIdx.x * blockDim.x + threadIdx.Xx;
int my_row = blockIdx.y * blockDim.y + threadIdx.y;

matrix[my_row] [my_col] = ...
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CUDA kernels

for South East Europe’s Research Communities

0 Kernel calls are points of parallel execution on the GPU
0 Kernel is defind using __global__ declaration specifier
0 Meaning that it can execute on the GPU

0 Each kernel launch has an execution specification
0 Grid and block dimensions are necessary
0 Syntax is my_kernel<<< ... >>>(argl, arg2, ...);

0 There are some more declaration specifiers:

Executed on: Callable from:
__device__ float dev_func(...) device device
__global__ void kern_func(...) device host
__host__  float host_func(...) |host host
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CUDA kernel example

// Kernel definition e
__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;
cli]l] = A[1] + B[1];

int main()

{

// Kernel invocation with N threads
VecAdd<<<l, N>>>(A, B, C);
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GPU memory management

0 CUDA GPU has its own address space
0 Necessary to allocate and free data on the GPU

0 Necessary to transfer data from the main memory into the GPU
memory and in the other way

CPU [ GPU

float *h_buffer run kernel float *d_buffer

G
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CUDA memory API - data

allocation

for South East Europe’s Research Communities

a2 Memory allocation and deallocation — similar to malloc
and free in C for the CPU

0 cudaMalloc(void** dev_ptr, size_t size);
0 dev_ptr - address of a pointer to the device memory
0 size - size to allocate in bytes
0 double pointer because pointer itself will be changed
0 cudaFree(void* dev_ptr);

0 dev_ptr - pointer to the device memory allocated with
cudaMalloc

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013



CUDA memory API - data

movement

0 Used to explicitly move data to the GPU and back to the
CPU memory

0 cudaMemcpy(void* dst, const void* src, size_t
count, enum cudaMemcpyKind kind);

0 dst - pointer to the transfer destination address
O src - pointer to the transfer source address
0 count - size of data to copy in bytes

0 kind - type of transfer
0 cudaMemcpyHostToDevice - from the host to the device
0 cudaMemcpyDeviceToHost - from the device to the host
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CUDA memory API example

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

L] L]
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{

float *host_array, *dev_array; int size =
N*sizeof(float));

host_array = malloc(size);

cudaMalloc(&dev_array, size);

cudaMemcpy (dev_array, host_array, size,
cudaMemcpyHostToDevice);

// Kernel invocation with N threads

process_array<<<l, N>>>(dev_array);

cudaMemcpy (host_array, dev_array, size,
cudaMemcpyDeviceToHost) ;

free(host_array);

cudaFree(dev_array);
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Indexing of 2D structures

1 Contiguous memory for multidimensional structures
0 Can be accessed with a single indexing operation

0 Good for performance, allows for easy transferring of data
0 C example:
0 data is stored row by row in memory

o mat[i][j] translates to mat[i*width + j];
o In CUDA:

0 Thread x index changes fastest (important for thread scheduling
issues)

0 We should use x to select a column and y to select a row for a 2D
matrix
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Working with 2D arrays

High-Performance Computing Infrastructure

__global__ void process_matrix(float *mat, int nrows, int ncols) { carainitomm
int my_row = blockIdx.y * blockDim.y + threadIdx.y;
int my_col = blockIdx.x * blockDim.x + threadIdx.x;
//no need to loop through matrix elements, need to check bounds
(if my_row < nrows & & my_col < ncols) {
mat[my_row * ncols + my_col] = some_func();

}

void main() {

cudamMemcpy (dmat, hmat, size, cudaMemcpyHostToDevice);

dim3 block_size(NTHREADS, NTHREADS);

dim3 grid_size((ncols-1)/NTHREADS+1l, (nrows-1)/NTHREADS+1);
process_matrix<<<grid_size, block_size>>>(dmat, nrows, ncols);
cudaMemcpy (hmat, dmat, size, cudaMemcpyDeviceToHost);
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GPU memory organization

0 Registers are per-thread
0 very low latency, very high throughput
0 limited resource, used for automatic variables

0 Shared memory (and L1 cache) is per-block
0 low latency, high throughput
0 can yield significant performance boost, depends on algorithm
0 programmer is responsible for its usage
0 shared/cache split can be controlled using the API

1 Global memory is visible to all threads

0 high latency, moderate throughput
0 memory allocated with cudaMalloc is global
0 has the highest capacity

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013



CUDA memory organization

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

_dev-i Ce_ -int g-loba-l_var; //g-loba-l oooooooooooooooooooooooooooooooooooooo

_global__ void my_kernel(float *array, int size)

{
int = blockDim.x; //register
int = blockIdx.x * blockDim.x + threadIdx.Xx;
__shared__ float smem[block_xsize]; //shared
//1oad into shared memory
smem[threadIdx.x] = array[my_ind];

//do something with shared array
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Thread synchronization in

CUDA

0 Sometimes a synchronization between threads is
necessary

0 happens between various computation stages
0 usually follows loading into shared memory

1 Synchronization between threads in the same block

0 __syncthreads() function causes each thread in a block to wait
untill all reach that point

0 to ensure that all needed elements are stored into shared memory

0 to ensure that all needed elements are read from shared memory
before its contents are modified again

2 Synchronization between threads from different blocks
0 can be done with global variables - slow, not recommended
0 best to create separate kernels and synchronize in between
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Host — device

synchronization in CUDA

CUDA calls are synchronous with regard to host and
device

0 example cudaMalloc, cudaMemcpy, ...
Kernel launches are asynchronous on the host side

Host can do some work while kernel is being executed on
the GPU

To synchronize after a kernel launch - use
cudabDeviceSynchronize()

Allows for partial overlap — but there is an asynchronous
API for even more control

Memory copying can be overlapped with computation on
the CPU, but also with computation on the GPU
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Asynchronous memory

transfers

0 cudaMemcpyAsync(void* dst, const void* src,
size_t count, enum cudaMemcpyKind kind,
cudastream_t stream = 0);

0 stream - an additional parameter to the call, defaults to zero
0 host memory used during transfer has to be page-locked
0 Page-locked host memory - prevents OS from swapping

0 allows using DMA controllers on host and device for better
performance, and

0 allows to safely copy memory without OS interference, thus
leaving the CPU free for other tasks

0 Needs to be explicitly allocated as page-locked
0 use cudaMallocHost() or cudaFreeHost()
0 should be used carefully, too much of it can slow down the system
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Introduction to streams

0 CUDA stream is a sequence of CUDA commands always
issued in order

0 even when these commands are asynchronous to the host, they
are executed in sequence on the GPU

kernelA<<<grid, block>>>(arrayA, sizeA);
kernelB<<<grid, block>>>(arrayB, sizeB);

0 Additional parameter in kernel configuration — stream to

use
0 if none is specified, a default stream is used

0 Different streams are independent, can execute their
commands concurrently

1 To use asynchronous copying — we need a separate
stream
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Using streams to overlap

copying and computation

for South East Europe’s Research Communities

0 Fermi GPUs and newer can overlap kernel execution, H2D
and D2H transfers at the same time

0 Create separate streams for execution and copying

1 For synchronization with a specific stream use
cudastreamsynchronize

copy array1 H2D | calc array1 | copy array1 D2H

copy array2 H2D | calc array2 | copy array1 D2H
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Using streams example

cudaStream_t streaml, stream?2;

cudastreamCreate(&streaml);

cudastreamCreate(&stream?);

cudamallocHost(&arrayl_h, size); cudamMalloc(&arrayl_d, size);
cudamallocHost(&array2_h, size); cudamMalloc(&array2_d, size);

cudaMemcpyAsync(arrayl_d, arrayl_h, size, H2D, streaml);
kernell<<<grid, block, 0, streaml>>>(arrayl_d, size);
cudamemcpyAsync(arrayl_h, arrayl_d, size, D2H, streaml);
cudaMemcpyAsync(array2_d, array2_h, size, H2D, stream2);
kernell<<<grid, block, 0, streaml>>>(arrayl_d, size);
cudaMemcpyAsync(arrayl_d, arrayl_h, size, D2H, streaml);

do_something_else(...);

//now we need the data from the first array
cudastreamSynchronize(streaml) ;
process_array(arrayl_h);
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Checking for errors in CUDA

calls

0 All CUDA runtime functions return an error code

a For synchronous calls (such as cudaMemcpy)
QO error is related to the call execution

0 but, can also be a result of some previous asynchronous call

0 For asynchronous calls (such as kernel launches or
cudaMemcpyAsync)

0 error can only be related to launching of the CUDA function (for
example, wrong parameters)

0 errors that happen during execution can only be checked at
subsequent synchronization points

cudaError_t err;

if((err=cudaMemcpy(a_d, a_h, size, H2D)) != cudaSuccess)
exit(1l)

compute<<<grid, block>>>(a_d, size);
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Numerical libraries for CUDA

GPUs

2 NVIDIA is developing numerical libraries for its GPU card
0 CUBLAS, CUFFT, CURAND, CUSPARSE
2 Thrust — a template library based on STL

0 Relatively sasy to use, just swap some routine calls and
link with CUDA libraries

0 memory allocation and movement is still responsibility of the
programmer

0 sometimes it is more complicated — CUBLAS uses column based
storage (like FORTRAN), need to swap dimensions

2 They have their own error types - for example
cublasStatus_t or cufftResult_t
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Debugging and profiling

0 For debugging there is an extension to gdb called
CUDA-GDB

1 Allows breakpoints inside kernels

a0 Supports switching between thread contexts and printing
values of thread local variables

10 Command-line profiler for CUDA is a part of the toolkit

0 very easy to use to get initial measurements - just export an
environment variable

export CUDA_PROFILE =1
export CUDA_PROFILE_LOG = path/to/log/file

U O
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0 Questions?
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