
www.hp-see.eu

HP-SEE
CUDA C overview

Dusan Stankovic
Scientific Computer Laboratory

Institute of Physics Belgrade
dusan.stankovic@ipb.ac.rs

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Agenda

q  Learn about basic features of CUDA C
q  Compilation process and compute capabilities
q  Hierarchical thread organization
q  Mapping of threads to data indices
q  Interface for GPU memory management
q  Interface for launching parallel execution

q  Also some advanced features
q  Memory organization on the GPU
q  Usage of CUDA streams and asynchronous execution
q  External libraries for CUDA
q  Profiling tools and performance measuring

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 2

Heterogenous execution
model

q  Host – a CPU which executes the main program in serial
q  Device – a GPU which executes parallel portions of code
q  Memory spaces are completely separate

q  All allocations and data movement – responsibility of the
programmer

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 3

Serial code

Kernel invocation

More serial code

CUDA threads

Code for GPUs

q  CUDA C program is written as follows:
q  Serial parts in host C code
q  Parallel parts in device SPMD kernel C code

q  Source code is compiled separately
q  Standard C/C++ code for the CPU
q  Device code in PTX – compiled just-in-time for the exact device

q  Use the nvcc for compilation
q  PTX is an assembly format
q  Specific binary code for the GPU devices

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 4

Device compute capability

q  NVIDIA GPU devices are based on different cores
q  Each new generation changes architecture and adds some new

features (Fermi, Kepler, ...)
q  All use the same programming model even when the internal

organization changes a lot
q  Compute capability used to show which features GPUs

support
q  Major number – entirely new architecture

q  2 for Fermi, 3 for Kepler
q  Minor number – incremental upgrades to an architecture

q  3.5 for newest Tesla cards, includes some new features

q  Sometimes new features can be significant
q  1.3 added support for double precision arithmetic

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 5

Thread organization

q  Inherent variables for each thread in a kernel launch
q  blockDim, blockIdx for blocks in a grid
q  threadIdx for threads in a block

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 6

image taken from NVIDIA
CUDA C Programming Guide

Thread mapping to data
indices

q  Both the grid and each thread block can be three-
dimensional
q  Predefined data type dim3 to hold grid and block dimensions
q  Parameter for the kernel launch

q  Example: a 2D matrix

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 7

float matrix[N][N];

int my_col = blockIdx.x * blockDim.x + threadIdx.x;

int my_row = blockIdx.y * blockDim.y + threadIdx.y;

matrix[my_row][my_col] = ...

CUDA kernels

q  Kernel calls are points of parallel execution on the GPU
q  Kernel is defind using __global__ declaration specifier

q  Meaning that it can execute on the GPU
q  Each kernel launch has an execution specification

q  Grid and block dimensions are necessary
q  Syntax is my_kernel<<< ... >>>(arg1, arg2, ...);

q  There are some more declaration specifiers:

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 8

Executed on: Callable from:
__device__ float dev_func(...) device device
__global__ void kern_func(...) device host
__host__ float host_func(...) host host

CUDA kernel example

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 9

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 ...

 // Kernel invocation with N threads

 VecAdd<<<1, N>>>(A, B, C);

 ...

}

GPU memory management

q  CUDA GPU has its own address space
q  Necessary to allocate and free data on the GPU
q  Necessary to transfer data from the main memory into the GPU

memory and in the other way

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 10

CPU
float *h_buffer

GPU
float *d_buffer run kernel

CUDA memory API - data
allocation

q  Memory allocation and deallocation – similar to malloc
and free in C for the CPU

q  cudaMalloc(void** dev_ptr, size_t size);
q  dev_ptr - address of a pointer to the device memory
q  size - size to allocate in bytes
q  double pointer because pointer itself will be changed

q  cudaFree(void* dev_ptr);
q  dev_ptr - pointer to the device memory allocated with
cudaMalloc

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 11

CUDA memory API - data
movement

q  Used to explicitly move data to the GPU and back to the
CPU memory

q  cudaMemcpy(void* dst, const void* src, size_t
count, enum cudaMemcpyKind kind);
q  dst - pointer to the transfer destination address
q  src - pointer to the transfer source address
q  count – size of data to copy in bytes
q  kind – type of transfer

q  cudaMemcpyHostToDevice - from the host to the device
q  cudaMemcpyDeviceToHost - from the device to the host

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 12

CUDA memory API example

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 13

int main()

{

 float *host_array, *dev_array; int size =
N*sizeof(float));

 host_array = malloc(size);

 cudaMalloc(&dev_array, size);

 cudaMemcpy(dev_array, host_array, size,

 cudaMemcpyHostToDevice);

 // Kernel invocation with N threads

 process_array<<<1, N>>>(dev_array);

 cudaMemcpy(host_array, dev_array, size,

 cudaMemcpyDeviceToHost);

 free(host_array);

 cudaFree(dev_array);

}

Indexing of 2D structures

q  Contiguous memory for multidimensional structures
q  Can be accessed with a single indexing operation
q  Good for performance, allows for easy transferring of data

q  C example:
q  data is stored row by row in memory
q  mat[i][j] translates to mat[i*width + j];

q  In CUDA:
q  Thread x index changes fastest (important for thread scheduling

issues)
q  We should use x to select a column and y to select a row for a 2D

matrix

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 14

Working with 2D arrays
example

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 15

__global__ void process_matrix(float *mat, int nrows, int ncols) {

 int my_row = blockIdx.y * blockDim.y + threadIdx.y;

 int my_col = blockIdx.x * blockDim.x + threadIdx.x;

 //no need to loop through matrix elements, need to check bounds

 (if my_row < nrows && my_col < ncols) {

 mat[my_row * ncols + my_col] = some_func();

 }

}

void main() {

 ...

 cudaMemcpy(dmat, hmat, size, cudaMemcpyHostToDevice);

 dim3 block_size(NTHREADS, NTHREADS);

 dim3 grid_size((ncols-1)/NTHREADS+1, (nrows-1)/NTHREADS+1);

 process_matrix<<<grid_size, block_size>>>(dmat, nrows, ncols);

 cudaMemcpy(hmat, dmat, size, cudaMemcpyDeviceToHost);

 ...

}

GPU memory organization

q  Registers are per-thread
q  very low latency, very high throughput
q  limited resource, used for automatic variables

q  Shared memory (and L1 cache) is per-block
q  low latency, high throughput
q  can yield significant performance boost, depends on algorithm
q  programmer is responsible for its usage
q  shared/cache split can be controlled using the API

q  Global memory is visible to all threads
q  high latency, moderate throughput
q  memory allocated with cudaMalloc is global
q  has the highest capacity

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 16

CUDA memory organization
examples

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 17

__device__ int global_var; //global

__global__ void my_kernel(float *array, int size)

{

 int block_xsize = blockDim.x; //register

 int my_ind = blockIdx.x * blockDim.x + threadIdx.x;

 __shared__ float smem[block_xsize]; //shared

 //load into shared memory

 smem[threadIdx.x] = array[my_ind];

 ...

 //do something with shared array

}

Thread synchronization in
CUDA

q  Sometimes a synchronization between threads is
necessary
q  happens between various computation stages
q  usually follows loading into shared memory

q  Synchronization between threads in the same block
q  __syncthreads() function causes each thread in a block to wait

untill all reach that point
q  to ensure that all needed elements are stored into shared memory
q  to ensure that all needed elements are read from shared memory

before its contents are modified again
q  Synchronization between threads from different blocks

q  can be done with global variables – slow, not recommended
q  best to create separate kernels and synchronize in between

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 18

Host – device
synchronization in CUDA

q  CUDA calls are synchronous with regard to host and
device
q  example cudaMalloc, cudaMemcpy, ...

q  Kernel launches are asynchronous on the host side
q  Host can do some work while kernel is being executed on

the GPU
q  To synchronize after a kernel launch – use
cudaDeviceSynchronize()

q  Allows for partial overlap – but there is an asynchronous
API for even more control

q  Memory copying can be overlapped with computation on
the CPU, but also with computation on the GPU

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 19

Asynchronous memory
transfers

q  cudaMemcpyAsync(void* dst, const void* src,
size_t count, enum cudaMemcpyKind kind,
cudaStream_t stream = 0);
q  stream - an additional parameter to the call, defaults to zero
q  host memory used during transfer has to be page-locked

q  Page-locked host memory – prevents OS from swapping
q  allows using DMA controllers on host and device for better

performance, and
q  allows to safely copy memory without OS interference, thus

leaving the CPU free for other tasks
q  Needs to be explicitly allocated as page-locked

q  use cudaMallocHost() or cudaFreeHost()
q  should be used carefully, too much of it can slow down the system

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 20

Introduction to streams

q  CUDA stream is a sequence of CUDA commands always
issued in order
q  even when these commands are asynchronous to the host, they

are executed in sequence on the GPU

q  Additional parameter in kernel configuration – stream to

use
q  if none is specified, a default stream is used

q  Different streams are independent, can execute their
commands concurrently

q  To use asynchronous copying – we need a separate
stream

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 21

kernelA<<<grid, block>>>(arrayA, sizeA);
kernelB<<<grid, block>>>(arrayB, sizeB);

Using streams to overlap
copying and computation

q  Fermi GPUs and newer can overlap kernel execution, H2D
and D2H transfers at the same time

q  Create separate streams for execution and copying
q  For synchronization with a specific stream use
cudaStreamSynchronize

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 22

copy array1 H2D calc array1 copy array1 D2H

copy array2 H2D calc array2 copy array1 D2H

Using streams example

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 23

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMallocHost(&array1_h, size); cudaMalloc(&array1_d, size);

cudaMallocHost(&array2_h, size); cudaMalloc(&array2_d, size);

cudaMemcpyAsync(array1_d, array1_h, size, H2D, stream1);

kernel1<<<grid, block, 0, stream1>>>(array1_d, size);

cudaMemcpyAsync(array1_h, array1_d, size, D2H, stream1);

cudaMemcpyAsync(array2_d, array2_h, size, H2D, stream2);

kernel1<<<grid, block, 0, stream1>>>(array1_d, size);

cudaMemcpyAsync(array1_d, array1_h, size, D2H, stream1);

do_something_else(...);

//now we need the data from the first array

cudaStreamSynchronize(stream1);

process_array(array1_h);

Checking for errors in CUDA
calls

q  All CUDA runtime functions return an error code
q  For synchronous calls (such as cudaMemcpy)

q  error is related to the call execution
q  but, can also be a result of some previous asynchronous call

q  For asynchronous calls (such as kernel launches or
cudaMemcpyAsync)
q  error can only be related to launching of the CUDA function (for

example, wrong parameters)
q  errors that happen during execution can only be checked at

subsequent synchronization points

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 24

cudaError_t err;

if((err=cudaMemcpy(a_d, a_h, size, H2D)) != cudaSuccess)
exit(1)

compute<<<grid, block>>>(a_d, size);

if((err=cudaDeviceSynchronize()) != cudaSuccess) exit(1);

Numerical libraries for CUDA
GPUs

q  NVIDIA is developing numerical libraries for its GPU cards
q  CUBLAS, CUFFT, CURAND, CUSPARSE
q  Thrust – a template library based on STL

q  Relatively sasy to use, just swap some routine calls and
link with CUDA libraries
q  memory allocation and movement is still responsibility of the

programmer
q  sometimes it is more complicated – CUBLAS uses column based

storage (like FORTRAN), need to swap dimensions

q  They have their own error types – for example
cublasStatus_t or cufftResult_t

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 25

Debugging and profiling

q  For debugging there is an extension to gdb called
CUDA-GDB

q  Allows breakpoints inside kernels
q  Supports switching between thread contexts and printing

values of thread local variables

q  Command-line profiler for CUDA is a part of the toolkit
q  very easy to use to get initial measurements – just export an

environment variable
q  export CUDA_PROFILE = 1
q  export CUDA_PROFILE_LOG = path/to/log/file

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 26

Thank you

q  Questions?

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013 27

