HP-SEE

CUDA C overview

www.hp-see.eu

Dusan Stankovic

Scientific Computer Laboratory
Institute of Physics Belgrade
dusan.stankovic@ipb.ac.rs

.

>

HP-SEE

High-Performance Computing Infrastructure
for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

0 Learn about basic features of CUDA C

0 Compilation process and compute capabilities
0 Hierarchical thread organization
0 Mapping of threads to data indices
0 Interface for GPU memory management
0 Interface for launching parallel execution
1 Also some advanced features
0 Memory organization on the GPU
0 Usage of CUDA streams and asynchronous execution
0 External libraries for CUDA
0 Profiling tools and performance measuring

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Heterogenous execution

0 Host - a CPU which executes the main program in serial
0 Device - a GPU which executes parallel portions of code

0 Memory spaces are completely separate

0 All allocations and data movement - responsibility of the
programmer

[Serial code } CUDA threads

4

[Kernel invocation } >

4

[More serial code 1

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Code for GPUs

a CUDA C program is written as follows:
0 Serial parts in host C code
0 Parallel parts in device SPMD kernel C code

0 Source code is compiled separately

0 Standard C/C++ code for the CPU

0 Device code in PTX - compiled just-in-time for the exact device
1 Use the nvcc for compilation

0 PTX is an assembly format

0 Specific binary code for the GPU devices

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Device compute capability

a0 NVIDIA GPU devices are based on different cores

0 Each new generation changes architecture and adds some new
features (Fermi, Kepler, ...)

0 All use the same programming model even when the internal
organization changes a lot
0 Compute capability used to show which features GPUs
support

0 Major number - entirely new architecture
0 2 for Fermi, 3 for Kepler

0 Minor number - incremental upgrades to an architecture
0 3.5 for newest Tesla cards, includes some new features
d Sometimes new features can be significant
0 1.3 added support for double precision arithmetic

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Grid

Block (G 0) | Blodk(1,0) | Block(2 0)

Block (@ 1) Blodk (1, 1) %(z 1)

"
-
'e']) Sy
f LY
& : Y .
'a ¢ [} ~,
/ t’ ‘\ \
/r £ \

Block (1, 1)

image taken from NVIDIA
CUDA C Programming Guide

0 Inherent variables for each thread in a kernel launch

0 blockbim, blockIdx for blocks in a grid
0 threadIdx for threads in a block

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Thread mapping to data

iIndices

0 Both the grid and each thread block can be three-
dimensional

0 Predefined data type dim3 to hold grid and block dimensions
0 Parameter for the kernel launch

0 Example: a 2D matrix

float matrix[N][N];

int my_col blockIdx.x * blockDim.x + threadIdx.Xx;
int my_row = blockIdx.y * blockDim.y + threadIdx.y;

matrix[my_row] [my_col] = ...

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

CUDA kernels

for South East Europe’s Research Communities

0 Kernel calls are points of parallel execution on the GPU
0 Kernel is defind using __global__ declaration specifier
0 Meaning that it can execute on the GPU

0 Each kernel launch has an execution specification
0 Grid and block dimensions are necessary
0 Syntax is my_kernel<<< ... >>>(argl, arg2, ...);

0 There are some more declaration specifiers:

Executed on: Callable from:
__device__ float dev_func(...) device device
__global__ void kern_func(...) device host
__host__ float host_func(...) |host host

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

CUDA kernel example

// Kernel definition e
__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;
cli]l] = A[1] + B[1];

int main()

{

// Kernel invocation with N threads
VecAdd<<<l, N>>>(A, B, C);

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

GPU memory management

0 CUDA GPU has its own address space
0 Necessary to allocate and free data on the GPU

0 Necessary to transfer data from the main memory into the GPU
memory and in the other way

CPU [GPU

float *h_buffer run kernel float *d_buffer

G

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

CUDA memory API - data

allocation

for South East Europe’s Research Communities

a2 Memory allocation and deallocation — similar to malloc
and free in C for the CPU

0 cudaMalloc(void** dev_ptr, size_t size);
0 dev_ptr - address of a pointer to the device memory
0 size - size to allocate in bytes
0 double pointer because pointer itself will be changed
0 cudaFree(void* dev_ptr);

0 dev_ptr - pointer to the device memory allocated with
cudaMalloc

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

CUDA memory API - data

movement

0 Used to explicitly move data to the GPU and back to the
CPU memory

0 cudaMemcpy(void* dst, const void* src, size_t
count, enum cudaMemcpyKind kind);

0 dst - pointer to the transfer destination address
O src - pointer to the transfer source address
0 count - size of data to copy in bytes

0 kind - type of transfer
0 cudaMemcpyHostToDevice - from the host to the device
0 cudaMemcpyDeviceToHost - from the device to the host

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

CUDA memory API example

rrr

L] L]
1 nt ma1 n() oooooooooooooooooooooooooooooooooooooo

{

float *host_array, *dev_array; int size =
N*sizeof(float));

host_array = malloc(size);

cudaMalloc(&dev_array, size);

cudaMemcpy (dev_array, host_array, size,
cudaMemcpyHostToDevice);

// Kernel invocation with N threads

process_array<<<l, N>>>(dev_array);

cudaMemcpy (host_array, dev_array, size,
cudaMemcpyDeviceToHost) ;

free(host_array);

cudaFree(dev_array);

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Indexing of 2D structures

1 Contiguous memory for multidimensional structures
0 Can be accessed with a single indexing operation

0 Good for performance, allows for easy transferring of data
0 C example:
0 data is stored row by row in memory

o mat[i][j] translates to mat[i*width + j];
o In CUDA:

0 Thread x index changes fastest (important for thread scheduling
issues)

0 We should use x to select a column and y to select a row for a 2D
matrix

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Working with 2D arrays

High-Performance Computing Infrastructure

__global__ void process_matrix(float *mat, int nrows, int ncols) { carainitomm
int my_row = blockIdx.y * blockDim.y + threadIdx.y;
int my_col = blockIdx.x * blockDim.x + threadIdx.x;
//no need to loop through matrix elements, need to check bounds
(if my_row < nrows & & my_col < ncols) {
mat[my_row * ncols + my_col] = some_func();

}

void main() {

cudamMemcpy (dmat, hmat, size, cudaMemcpyHostToDevice);

dim3 block_size(NTHREADS, NTHREADS);

dim3 grid_size((ncols-1)/NTHREADS+1l, (nrows-1)/NTHREADS+1);
process_matrix<<<grid_size, block_size>>>(dmat, nrows, ncols);
cudaMemcpy (hmat, dmat, size, cudaMemcpyDeviceToHost);

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

GPU memory organization

0 Registers are per-thread
0 very low latency, very high throughput
0 limited resource, used for automatic variables

0 Shared memory (and L1 cache) is per-block
0 low latency, high throughput
0 can yield significant performance boost, depends on algorithm
0 programmer is responsible for its usage
0 shared/cache split can be controlled using the API

1 Global memory is visible to all threads

0 high latency, moderate throughput
0 memory allocated with cudaMalloc is global
0 has the highest capacity

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

CUDA memory organization

rrr

dev-i Ce -int g-loba-l_var; //g-loba-l oooooooooooooooooooooooooooooooooooooo

_global__ void my_kernel(float *array, int size)

{
int = blockDim.x; //register
int = blockIdx.x * blockDim.x + threadIdx.Xx;
__shared__ float smem[block_xsize]; //shared
//1oad into shared memory
smem[threadIdx.x] = array[my_ind];

//do something with shared array

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Thread synchronization in

CUDA

0 Sometimes a synchronization between threads is
necessary

0 happens between various computation stages
0 usually follows loading into shared memory

1 Synchronization between threads in the same block

0 __syncthreads() function causes each thread in a block to wait
untill all reach that point

0 to ensure that all needed elements are stored into shared memory

0 to ensure that all needed elements are read from shared memory
before its contents are modified again

2 Synchronization between threads from different blocks
0 can be done with global variables - slow, not recommended
0 best to create separate kernels and synchronize in between

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

O

Host — device

synchronization in CUDA

CUDA calls are synchronous with regard to host and
device

0 example cudaMalloc, cudaMemcpy, ...
Kernel launches are asynchronous on the host side

Host can do some work while kernel is being executed on
the GPU

To synchronize after a kernel launch - use
cudabDeviceSynchronize()

Allows for partial overlap — but there is an asynchronous
API for even more control

Memory copying can be overlapped with computation on
the CPU, but also with computation on the GPU

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Asynchronous memory

transfers

0 cudaMemcpyAsync(void* dst, const void* src,
size_t count, enum cudaMemcpyKind kind,
cudastream_t stream = 0);

0 stream - an additional parameter to the call, defaults to zero
0 host memory used during transfer has to be page-locked
0 Page-locked host memory - prevents OS from swapping

0 allows using DMA controllers on host and device for better
performance, and

0 allows to safely copy memory without OS interference, thus
leaving the CPU free for other tasks

0 Needs to be explicitly allocated as page-locked
0 use cudaMallocHost() or cudaFreeHost()
0 should be used carefully, too much of it can slow down the system

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Introduction to streams

0 CUDA stream is a sequence of CUDA commands always
issued in order

0 even when these commands are asynchronous to the host, they
are executed in sequence on the GPU

kernelA<<<grid, block>>>(arrayA, sizeA);
kernelB<<<grid, block>>>(arrayB, sizeB);

0 Additional parameter in kernel configuration — stream to

use
0 if none is specified, a default stream is used

0 Different streams are independent, can execute their
commands concurrently

1 To use asynchronous copying — we need a separate
stream

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Using streams to overlap

copying and computation

for South East Europe’s Research Communities

0 Fermi GPUs and newer can overlap kernel execution, H2D
and D2H transfers at the same time

0 Create separate streams for execution and copying

1 For synchronization with a specific stream use
cudastreamsynchronize

copy array1 H2D | calc array1 | copy array1 D2H

copy array2 H2D | calc array2 | copy array1 D2H

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Using streams example

cudaStream_t streaml, stream?2;

cudastreamCreate(&streaml);

cudastreamCreate(&stream?);

cudamallocHost(&arrayl_h, size); cudamMalloc(&arrayl_d, size);
cudamallocHost(&array2_h, size); cudamMalloc(&array2_d, size);

cudaMemcpyAsync(arrayl_d, arrayl_h, size, H2D, streaml);
kernell<<<grid, block, 0, streaml>>>(arrayl_d, size);
cudamemcpyAsync(arrayl_h, arrayl_d, size, D2H, streaml);
cudaMemcpyAsync(array2_d, array2_h, size, H2D, stream2);
kernell<<<grid, block, 0, streaml>>>(arrayl_d, size);
cudaMemcpyAsync(arrayl_d, arrayl_h, size, D2H, streaml);

do_something_else(...);

//now we need the data from the first array
cudastreamSynchronize(streaml) ;
process_array(arrayl_h);

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Checking for errors in CUDA

calls

0 All CUDA runtime functions return an error code

a For synchronous calls (such as cudaMemcpy)
QO error is related to the call execution

0 but, can also be a result of some previous asynchronous call

0 For asynchronous calls (such as kernel launches or
cudaMemcpyAsync)

0 error can only be related to launching of the CUDA function (for
example, wrong parameters)

0 errors that happen during execution can only be checked at
subsequent synchronization points

cudaError_t err;

if((err=cudaMemcpy(a_d, a_h, size, H2D)) != cudaSuccess)
exit(1l)

compute<<<grid, block>>>(a_d, size);

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Numerical libraries for CUDA

GPUs

2 NVIDIA is developing numerical libraries for its GPU card
0 CUBLAS, CUFFT, CURAND, CUSPARSE
2 Thrust — a template library based on STL

0 Relatively sasy to use, just swap some routine calls and
link with CUDA libraries

0 memory allocation and movement is still responsibility of the
programmer

0 sometimes it is more complicated — CUBLAS uses column based
storage (like FORTRAN), need to swap dimensions

2 They have their own error types - for example
cublasStatus_t or cufftResult_t

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

Debugging and profiling

0 For debugging there is an extension to gdb called
CUDA-GDB

1 Allows breakpoints inside kernels

a0 Supports switching between thread contexts and printing
values of thread local variables

10 Command-line profiler for CUDA is a part of the toolkit

0 very easy to use to get initial measurements - just export an
environment variable

export CUDA_PROFILE =1
export CUDA_PROFILE_LOG = path/to/log/file

U O

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

g
N

Thank you

P-SEE

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

0 Questions?

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade — 18 February 2013

