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*Heterogeneous parallel system
- Motivation

*CPU/GPU Architecture

- Abstract view of a processor
- Latency vs. Throughput

*CUDA Platform

- Streaming Multiprocessor
- Memory hierarchies
- Scalable programming model
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Heterogeneous Parallel |

Systems

* Using the best match for the task at hand
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Heterogeneous Parallel

Systems: Motivation(1)

* Floating-Point Operations per Seconds for the CPU an
GPU Theoretical
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Heterogeneous Parallel

Systems: Motivation(2)

« Memory Bandwidth for the CPU and GPU
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CPU/GPU Architecture:

Abstract view of a processor

* The von Neumann architecture
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CPU/GPU Architecture:

Latency vs. throughput

Coorn tronl

ALU

E|E
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GPU
CPU (latency oriented design):  GPU (throughput oriented design):
- Large caches - Small caches
- Sophisticated control - Simple control
- Powerful ALU - Energy efficient ALUs

- Latencies compensated by
large number of threads
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CUDA: Memory hierarchy(1)

*Local memory & registers
-Small
-Accessed by one core/thread
-Low latency (~1 cycle)

*Shared memory
-Not large (16 KB)
-Low latency (~5 cycles)
-Shared between cores/threads
within a thread block

*Global memory
-Large (256mb+)
-High bandwidth (100 GB/s)
-High latency (~500 cycles)

*Constant memory
-Read only, low latency, shared by
all threads
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CUDA: Scalable

Programming Model (1)

*Three key abstractions:
*Hierarchy of thread groups

- Grid, thread blocks, warps, threads
Shared memories

- Global, shared, local, registers
*Barrier synchronization
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CUDA: Scalable

Programming Model (2)

*Grid

- 3D array of thread blocks
*Thread blocks

- 3D array of threads

- Up to 1024 threads
*Thread warp

— Consists of 32 threads which share

a control unit.
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CUDA: Scalable

Programming Model (4)

*Automatic program scalability

- Across cards of various sizes e —
- Across new core architectures Block0  Bock1 Block?  Block3.
* Subject to compute capabilities ‘Block4 Block5 Block6  Block7
*SMP is a basic unit of
hardware components each
GPU has. l +
-Better GPUs have more SMPps, (Fuwhzst | [oruwihasms |

SMO || 5M1 || 5MO 5M1 5M 2 sM2 ||

Compute capabilities are
backward compatible, so that || [Eexe s | |jssks [secks jsiscka | jsockes
older code can run on newer k2 ok

higher capability hardware.

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013



CUDA: Scalable

Programming Model (5)

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

Feature support (unlisted features are Compute capability (version)

supported for all compute capabilities) 1.0 1.1 1.2/ 1.3 2.x 3.0 3.5

[ ] CO m p u te Ca pa b I I Iti es S pec i fy Integer atomic functions operating on

32-bit words in global memory

W h iC h featu res h a rd Wa re Ca n atomicExch() operating on 32-bit

floating point values in global memory

S u p p O rt Integer atomic functions operating on
| |

32-bit words in shared memory

No Yes

atomicExch() operating on 32-bit
floating point values in shared memory No Yes

Integer atomic functions operating on
64-bit words in global memory

Warp vote functions
Double-precision floating-point operations Mo Yes

Atomic functions operating on 64-bit
integer values in shared memory

Floating-point atomic addition operating on
32-bit words in global and shared memory

_ballot()
_threadfence_system() No Yes

_syncthreads_county),

_syncthreads_and(),

_syncthreads_or()

Surface functions

3D grid of thread block

Warp shuffle functions No Yes
Funnel shift

No Yes
Dynamic parallelism
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Programming Languages
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Prerequisites

High-Performance Computing Infrastructure
for South East Europe's Research Communities

CUDA Toolkit and developer driver
- http://www.nvidia.com/getcuda

CUDA capable hardware
- http://www.nvidia.com/object/cuda_gpus.htm

To test if the CUDA Toolkit is correctly installed:

$ nvcc --version

nvcc: NVIDIA (R) Cuda conpiler driver
Copyright (c) 2005-2012 NVIDI A Corporation
Built on Fri_Sep 28 16:10: 16 _PDT_ 2012

Cuda conpilation tools, release 5.0, VO0.2.1221
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References

High-Performance Computing Infrastructure
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Many graphics and materials in this presentation are
borrowed from the following sources:

NVidia CUDA Tookit documentation
- http://docs.nvidia.com/cuda/index.html

- Slides by prof. Wen-mei W. Hwu, of University of Illinois
at Urbana-Chapaign, from his online course in
Heterogeneous Parallel programming at Coursera

- https://www.coursera.org/course/hetero

Stanford CS193G course material
- http://see.stanford.edu/see/courses.aspx
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