HP-SEE

Introduction to heterogeneous
parallel programming
www.hp-see.eu

Petar Jovanovic¢

Scientific Computing Laboratory
Institute of Physics Belgrade
petarj@ipb.ac.rs

B

y
HP-SEE

High-Performance Computing Infrastructure
for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

*Heterogeneous parallel system
- Motivation

*CPU/GPU Architecture

- Abstract view of a processor
- Latency vs. Throughput

*CUDA Platform

- Streaming Multiprocessor
- Memory hierarchies
- Scalable programming model

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Heterogeneous Parallel |

Systems

* Using the best match for the task at hand

Latency Throughput
Cores Cores

Configurable

SIS Logic/Cores

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

On-chip
Memories

Heterogeneous Parallel

Systems: Motivation(1)

* Floating-Point Operations per Seconds for the CPU an
GPU Theoretical

GFLOP/s
3250

3000
HVIDIA GPU Single Predsion

2750 g MWI DA GPL Double Pred sion
2500 g Mt CPU Single Predsion
s | ibe] CPL Double Predision

2250
2000
1750
1500
1250
1000

750
Tesla C2050 Sandy Bridee

500

15{} Tesla C1060

Woodcrest Bl et

Farpertown DEEE:S" ere

0
Sep-OFntium4 50 04 Mar-0 Aug-12

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Heterogeneous Parallel

Systems: Motivation(2)

« Memory Bandwidth for the CPU and GPU

Theoretical GB/s

200

180

160

140

120

100

80

60

20

e CPL

GPU

Sandy Bridee

Westmere

Bloomfield

Woodcrest

Prescott

Harpertowm

0 vormwoaa —

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CPU/GPU Architecture:

Abstract view of a processor

* The von Neumann architecture

| Keyboard

Control Unit . Mouse
Main
Memory Input
Display
Registers Secondary
| 11 1 Memory
[| | | 1 Printer
| | [| Storage Output
Devices

Central Processing Unit
(CPU)

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CPU/GPU Architecture:

Latency vs. throughput

Coorn tronl

ALU

E|E
2

GPU
CPU (latency oriented design): GPU (throughput oriented design):
- Large caches - Small caches
- Sophisticated control - Simple control
- Powerful ALU - Energy efficient ALUs

- Latencies compensated by
large number of threads

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Ll
L
wh
al
=

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

ing

Stream

_|__|||_|_|||__|_|L|__||L|_ ja[a[ls{a]a]n sis]s/ala]EHE|

EONOOEOCODOEEEEN

CUDA
multiprocessor (SMP)

L2 Cache

HNEEIOEOEEOEEHEE

[[n[afa [iun{is[n[s(u[s[a[s)a [s ([i T m [

[T e [l i INHEDNEDENONENHE

[nimjaa[e]aia/nis]aixis|aisis]E} miz[u[s[ziais[aisl=/n|sizms}

Wv¥a aoBLaIU| 1SOH peayLeb|o

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CUDA: Memory hierarchy(1)

*Local memory & registers
-Small
-Accessed by one core/thread
-Low latency (~1 cycle)

*Shared memory
-Not large (16 KB)
-Low latency (~5 cycles)
-Shared between cores/threads
within a thread block

*Global memory
-Large (256mb+)
-High bandwidth (100 GB/s)
-High latency (~500 cycles)

*Constant memory
-Read only, low latency, shared by
all threads

GPU Grid

Block (0, 0)

=

P

-

Block (1, 0)

=

Thread (0, 0)

Thread (1, 0)

Thread (0, 0) Thread (1, 0)

CPU

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

+ Per-thread local

MEMary

¥ Perblock shared
- MEmory

-
My

Grid O

Blodk (0, 0)

Block (1, O)

.

Black (2. 0)

Blodk (0, 1)

Block (1, 1)

.

Black (2. 1)

Grid 1

Block (0, 0)

Block (0, 1)

Block (0, 2)

Introduction to parallel programming with CUDA training —

Global memory

Institute of Physics Belgrade 18-Feb-2013

HP-S

High-Perfor
OSHEIEuF(

uting

EE

CUDA: Scalable

Programming Model (1)

*Three key abstractions:
*Hierarchy of thread groups

- Grid, thread blocks, warps, threads
Shared memories

- Global, shared, local, registers
*Barrier synchronization

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CUDA: Scalable

Programming Model (2)

*Grid

- 3D array of thread blocks
*Thread blocks

- 3D array of threads

- Up to 1024 threads
*Thread warp

— Consists of 32 threads which share

a control unit.

Block (@ 0) || Blodc (1, 0) || Block (2, 0)

Block (0 1) Blodk (1, 1) k(2 1)

Block (1, 1)

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CUDA: Scalable

Programming Model (4)

*Automatic program scalability

- Across cards of various sizes e —
- Across new core architectures Block0 Bock1 Block? Block3.
* Subject to compute capabilities ‘Block4 Block5 Block6 Block7
*SMP is a basic unit of
hardware components each
GPU has. l +
-Better GPUs have more SMPps, (Fuwhzst | [oruwihasms |

SMO || 5M1 || 5MO 5M1 5M 2 sM2 ||

Compute capabilities are
backward compatible, so that || [Eexe s | |jssks [secks jsiscka | jsockes
older code can run on newer k2 ok

higher capability hardware.

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CUDA: Scalable

Programming Model (5)

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

Feature support (unlisted features are Compute capability (version)

supported for all compute capabilities) 1.0 1.1 1.2/ 1.3 2.x 3.0 3.5

[] CO m p u te Ca pa b I I Iti es S pec i fy Integer atomic functions operating on

32-bit words in global memory

W h iC h featu res h a rd Wa re Ca n atomicExch() operating on 32-bit

floating point values in global memory

S u p p O rt Integer atomic functions operating on
| |

32-bit words in shared memory

No Yes

atomicExch() operating on 32-bit
floating point values in shared memory No Yes

Integer atomic functions operating on
64-bit words in global memory

Warp vote functions
Double-precision floating-point operations Mo Yes

Atomic functions operating on 64-bit
integer values in shared memory

Floating-point atomic addition operating on
32-bit words in global and shared memory

_ballot()
_threadfence_system() No Yes

_syncthreads_county),

_syncthreads_and(),

_syncthreads_or()

Surface functions

3D grid of thread block

Warp shuffle functions No Yes
Funnel shift

No Yes
Dynamic parallelism

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

Programming Languages

Java
Pythom DirectC ompute
Wrappers

Directives
|&.q. DpenaCC)

CUDA-Enabled NVIDIA GPU

hepler Architecture i Tes|a K30
[compute capabilities 3.x) Szrarss dSaisg Tesla K10

Fermi Architecture GeForce 500 Serjes

[compute capabilities 2.x] GaForce 400 Seriec Qtadro Fagyi Series esiA a0 Series

GeFome 200 Series Guadro FX Series
Tesla Amhlt&c!".l r.-'e GeForce 8 3eries Quadro Plex Series Tesla 10 Series
[compute capabilities 1x) | SGaFarea 8 Series Quadro NVS Series

= : = T i
e |
rofessional oo Tmance

Graphics =" Computing

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013 15

Prerequisites

High-Performance Computing Infrastructure
for South East Europe's Research Communities

CUDA Toolkit and developer driver
- http://www.nvidia.com/getcuda

CUDA capable hardware
- http://www.nvidia.com/object/cuda_gpus.htm

To test if the CUDA Toolkit is correctly installed:

$ nvcc --version

nvcc: NVIDIA (R) Cuda conpiler driver
Copyright (c) 2005-2012 NVIDI A Corporation
Built on Fri_Sep 28 16:10: 16 _PDT_ 2012

Cuda conpilation tools, release 5.0, VO0.2.1221

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

http://www.nvidia.com/getcuda
http://www.nvidia.com/object/cuda_gpus.htm

References

High-Performance Computing Infrastructure
for South East Europe's Research Communities

Many graphics and materials in this presentation are
borrowed from the following sources:

NVidia CUDA Tookit documentation
- http://docs.nvidia.com/cuda/index.html

- Slides by prof. Wen-mei W. Hwu, of University of Illinois
at Urbana-Chapaign, from his online course in
Heterogeneous Parallel programming at Coursera

- https://www.coursera.org/course/hetero

Stanford CS193G course material
- http://see.stanford.edu/see/courses.aspx

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

