HP-SEE
Tiled matrix multiplication
(using shared memory)

www.hp-see.eu

Petar Jovanovic¢

Scientific Computing Laboratory
Institute of Physics Belgrade
petarj@ipb.ac.rs

HP-SEE

High-Performance Computing Infrastructure
for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Matrix Multiplication: Simple

host version in C
HP-SE

-1

re
=
es

voi d matrixMil OnHost (float* A float* B, float* C int wdth) { E
for (int i=0; i<width; i++) { ¥ T
for (int j=0; j<width; j++) { B
doubl e sum = 0;
for (int k=0; k<width; k++) { £
double a = Ali*w dt h+k]; 3
double b = B[k*w dt h+j];
sum += a*b; v
} IR X |
Ci*width+)] = sum |
) |
i | .
) e — f_
== 2
A.width o B.width -
n.hei:ght—l :

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Simple Matrix Multiplication

Kernel

__global __ void matrixMul Kernel (float* A, float* B, float* c
int width) {
I nt row = bl ockl dx. y*bl ockDi m y+t hr eadl dx. y;

Int col = bl ockl dx. x*bl ockDi m X+t hr ead! dx. .
i f ((row<width) && (col <width)) {
float tnp = O;
for (int i=0; i<width; i++)
C roww dt h+col] = tnp;
}
}

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

CUDA Memory Reminder(1)

*Local memory & registers
-Small
-Accessed by one core/thread
-Low latency (~1 cycle)

*Shared memory
-Not large (16 KB)
-Low latency (~5 cycles)
-Shared between cores/threads
within a thread block

*Global memory
-Large (256mb+)
-High bandwidth (100 GB/s)
-High latency (~500 cycles)

*Constant memory
-Read only, low latency, shared by
all threads

GPU Grid

Block (0, 0)

=

P

-

Block (1, 0)

=

Thread (0, 0)

Thread (1, 0)

Thread (0, 0) Thread (1, 0)

CPU

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

+ Per-thread local

MEMary

¥ Perblock shared
- MEmory

-
My

Grid O

Blodk (0, 0)

Block (1, O)

.

Black (2. 0)

Blodk (0, 1)

Block (1, 1)

.

Black (2. 1)

Grid 1

Block (0, 0)

Block (0, 1)

Block (0, 2)

Introduction to parallel programming with CUDA training —

Global memory

Institute of Physics Belgrade 18-Feb-2013

HP-S

High-Perfor
OSHEIEuF(

uting

EE

uﬂ

Shared Memoru in CUDA| "<

HP SEE

* A special type of memory whose contents are epr|C|tIy
declared and used in the source code
- One in each SM

- Accessed at much higher speed than global memory
- Still accessed by memory instructions

- A form of scratchpad memory

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Hardware View

il

————— > Memory

4
li ﬁ Processing Unit

| Shared

= e e o e e e e e e s e s e ==

— :
— N Register
Memory K > \AlJ.l/ Eile
' — —
1 A I X
Control Unit
RE IR
Processor (SM)

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Variable declaration Memory Scope Lifetime
int |ocal Var; register thread thread

__device shared int sharedVar; shared block block
__device__ int globalVar global grid application
__device__ _ _constant__ int constantVar; constant grid application

- __device_ _ is optional when used with __shared _ or
const ant

- Automatic variables reside in registers
- Except per-thread arrays, which are in global memory

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Common Programming

Strategy

- Partition data into tiles that

fit into shared memory : g 1
- Each thread block handles a g
tileby: Iﬁ :
- Loading it into shared memory Y
using multiple threads |2
- Performing the computation A c 1
on the tile g
0 wl =
- Copying results back from — - [|
shared to global memory ’ m‘; i lﬁ £
—u S b | § j
A.width B.width
Ll ‘r:

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Tiled Matrix Multiplication

Kernel

HP- SEE

__global __ void matrixMul Kernel (float* dA, float* dB, fl oat*" ﬁ@‘
Lnt width) {

__shared_ float dsA[TILE WDTH [TI LE W DTH] ;

~_shared_ float dsB[TILE WDTH| [TILE W DTH| ;

I nt bx = bl ockldx.x, by = bl ockl dx.y;
Int tx = threadldx.x, ty = threadl dx.y,;
int row = by*TI LE W DTH+t y;

i nt col = bx*TlILE W DTH+t x;

float tnp = O;

for (int i=0; i<width/TILE WDTH, i++) {

‘ dsAlty]| |t x| =dAl row*w dt h+i H+t x| ; ‘
dsB[ty][tx] =dBJ[(1 *TI LE WDTH+ty) W|dth+coI];
_synchtreads();

for (int j=0; J<T| LE WDTH, | ++)
tmp += dsA[ty][]]*dsB[J][tX];
syncht hr eads() ;

dC roww dt h+col] = tnp;

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

Size Considerations

High-Performance Computing Infrastructure
for South East Europe's Research Communities

- Each thread block should have many threads
- For 16x16 threads, each block performs 512 loads for 8192
mul/add operations

- For 32x32 threads, we have 2048 loads and 65536 mul/add
operations

- Each SMP in Fermi has 16 or 48 KB shared memory

- Size is implementation dependent
- TILE_WIDTH=16 takes 2*256*4B=2KB of shared memory

 Can have up to 8 thread blocks executing

- TILE_WIDTH=32 takes 8KB of shared memory per block, which
allows for 2 or 6 blocks to be active at the same time

Introduction to parallel programming with CUDA training — Institute of Physics Belgrade 18-Feb-2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

