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Introduction

0 Stochastic numerical methods (Monte Carlo methods) ar
based on simulation of random variables/processes and
estimation of their statistical properties. They have some
advantages for high dimensional problems, problems in
complicated domains or when we are interested in part of
the solution.

0 Quasi-Monte Carlo methods are deterministic methods
which use low discrepancy se%uences. For some problems
they offer higher precision and faster convergence.

1 Randomized quasi-Monte Carlo methods use randomized
(scrambled) qfuasirandom sequences. They combine the
advantages of Monte Carlo and quasi-Monte Carlo.
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Markov chain based problems

Consider the following problem : st e
u=Ku+f
The formal solution is the truncated Neumann series (for | |K||<1):
U, = f+ KFf + ...+ KkIf + Kky,
with truncation error u, - u = KX (ugy - u).
Two main types of the operator K:

(i) Kis an n x n matrix, u and f are vectors;
(ii) K is an integral transformation

0 Compute the scalar product J(u) = (h,u), h — given vector
0 Define r.v. 6 such that E[0] = J(u):
O[h] = h(So)/TT(8o) 220~ Qif(S), j=1.2,...
Here ¢, ¢4, ... is @ Markov chain (random walk) in G with initial density 1r(x) and

transition density p(X,y), which is equal to the normalized kernel of the integral
operator.

0 We have to estimate the mathematical expectation
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MCM accuracy

0 The MCM convergence rate is N-1/2 with sample size N (€ = g(B)N-12);

0 Probabilistic result - there is no absolute upper bound.
0 The statistical distribution of the error is a normal random variable.

0 The MCM error and the sample size are connected by:
€ = O(o N'/2), N = O(o/¢€)?
0 The computing time is proportional to N, i.e., it increases very fast if
a better accuracy is needed.

0 How to increase the convergence:
0 Variance reduction
0 Change of the underlying sequence

0 In this talk we consider improvement through sequence optimization
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to be as uniform as mathematically possible (and, as a consequence,
to ensure better convergence for the integration)

o The uniformity is measured in terms of discrepancy which is defined
in the following way: For a sequence with N points in [0,1]° define

Ry(J) = 1/N#{x, in J}-vol(J) for every J C [0,1]¢°
Dy* = supe« |Ry()I,

E* - the set of all rectangles with a vertex in zero.

o A sequence is called quasirandom if
Dy* < c(log N)s N-1
o Koksma-Hlawka inequality (for integration):
g[f] < V[f] Dy*

(where V[f] is the variation in the sense of Hardy-Kraus)
o The order of the error is O((log N)s N-1)
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Quasirandom walk

0 Quasirandom walk error:

5 (0) = limy_.( QW) - Jg Q(w)dp(w))
where ((w;) — the estimated variable is the analog of r.v.; w,— an element of the
guasirandom walks space

QO Chelson’s theorem for quasirandom walks :
Oy (G(Q)) = V(G o ). (D*n(Q))

where Q ={y} is a sequence of vectors in [0,1)?T, Q' = {w,} is a sequence of
guasirandom walks generated from Q by the mapping ';

0 There is a convergence

a Impractical error as:

D*, = O((log N)4T/N), where d is the dimension of the original problem and T is the
length of the chain
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Quasirandom Sequences and their scrambling

O Star discrepancy:
0 Quasirandom sequences: D" < ¢ (logN)s N-1
0 Random numbers: Dy* = O ((loglog N)-1/2 N-1/2)

0 A few quasirandom sequences are currently widely used:
Halton, Faure, Niederreiter and Sobol

0 Unfortunately, the coordinates of the points in high
dimensions show correlations. A possible solution to this
problem is the so-called scrambling.

0 The purpose of scrambling:

0 To improve 2-D projections and the quality of quasirandom
sequences in general
0 To provide practical method to obtain error estimates for QMC

0 To provide simple and unified way to generate quasirandom
numbers for parallel, distributed and grid-based computing
environments

0 To provide more choices of QRN sequences with better (often
optimal) quality to be used in QMC applications
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Scrambling techniques

a0 Scrambling was first proposed by Cranley and Patterson (1979)who -
took lattice points and randomized them by adding random shifts to
the sequences. Later, Owen (1998, 2002, 2003) and Tezuka (2002)
independently developed two powerful scrambling methods through
permutations

0 Although many other methods have been proposed, most of them are
modified or simplified Owen or Tezuka schemes (Braaten and Weller,
Atanassov, Matousek, Chi and Mascagni, Warnock, etc.)

0 There are two basic scrambling methods:
0 Randomized shifting

0 Digital permutations
0 The problem with Owen scrambling is its computational complexity
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0 Digital permutations: Let (x(), x(2)_, . .., x5) ) be any
quasirandom number in [0, 1)S and (z(1> 7AC) SN
z(s) ) is its scrambled version. Suppose each x(J> has a b-
ary representation x0)_, =0. x®_, x0 ... xG_ ., ... with K
defining the number of digits to be scrambled. Then
zU0) = o(x®W ), where o={®,, ..., &} n o, is a
uniformly chosen permutation of the digits {0,1,...,b-1}.

2 Randomized shifting has the form
z,= X, +r(mod 1),

where X, is any quasirandom number in [0, 1)Sand ris a
single s-dimensional pseudorandom number.

AMITANS 2013, 24-29 July, Albena



0 Let n be an integer presented in base p. The p-ary radical
inverse function 1s defined as

_ bo b1 b
dp(n) =20 + 2% 4 ... + Lo

where p is prime and b; comes from

n=bo+bip+ ... +bmp™  wmoss<p

0 An s-dimensional Halton sequence is defined as:

(Cbpl (’I’L), ¢p2(n)a R ¢ps (’I’L))

with  p; py ..., P, being relatively prime, and usually the first § primes
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The Faure sequence

0 Faure se quence (X]_l XZI---I X3["')I 1982 e bt

X,=(®,(P°n), ®,(Pn), ..., ®,(Psin))

where the generator matrix P is the Pascal matrix modulo b,
i.e. P(i,j) = C_J1tmodb

0 Generalized Faure sequence, Gfaure (Tezuka, 1994-95)

X,=(®,(ADPON), ©,(ARPLN), ..., D (ABGPsIn)),

where A0 is arbitrary non-singular lower triangular matrices

0 A special case (Faure, 2000) for A: all entries are equal to 1 for all
J’s
0 Scrambled Faure sequence
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Scrambled Faure Sequence

a2 Owen scrambling (Owen 1995, 2000, 2003)

0 Random linear scrambling (Matousek, 1997)

X,=(Pp(A1PON+g,), ®,(A®PIn+g,), ..., ,(ASPsin+g,),

where A’s are different random scrambling matrices and g’s
are different random shifts vectors

1 Faure sequence with I-binomial scrambling
0 I-binomial refers to a property of the generator matrices

2 Nonlinear scrambling Vanderwoerstyne&Chi, 2010)

X,0)= (D, (AO¥(POn) +g)),

where V¥ is a bijection that maps the non-zero digits of a digit
vector to their multiplicative inverse modulo b and leaves

the zero-digits unchanged.
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Full scrambling

0 Owen type of scrambling preserves the star discrepancy but is:very: o
time consuming

0 We have developed GPU-based algorithms for Owen type of
scrambling for Sobol (2010, Atanassov, Karaivanova, Ivanovska) and

for Halton (2013, Atanassov and Durchova)

0 With these algorithms we achieved a reasonable time to produce the
scrambled sequences

— CPU
-- GPU
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QMCM application in LA

Given a matrix A (n x n) and n-dimensional vector f,
consider the problems:

v Find the scalar product (g,x) of the unknown solution of a
system of linear algebraic equations with a given vector,
where the system is:

X =Ax + f
v Find an element of the inverse matrix C = Al
v Estimate the eigenpairs (A,x), XxeR" , such that
AX=AX
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Neumann series for SLAE

for South East Europe's Research Communities

0 Consider x=Ax+f, all eigenvalues of A lie within unit
square

0 The truncated Neumann series gives the approximate
solution of the system (given x(9) ):

xk) = f + Af + A2f+ ... Akx(0), k>0
0 The problem: estimate (h,x), where h - given vector:
(h,x) = hT f + hTAf + hT A2f+ ... hT Akx(0)

0 We can apply MCM and QMC for matrix-vector products
estimation
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Power method for largest

eigenvalue

0 Consider the eigenvalue problem:
Au = Au , AERM™n yeRn
A >IN = = N> N
2 The power method:
XM = Axm-1/ [|Ax™-T]]
AM = (h, Amf)/ (h, A™1f) =X .,

a2 We can apply MCM and QMCM to estimate matrix-vector
products
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Power method for resolvent

matrix

0 Resolvent matrix associated with A: R =[I-gA]' € R™"
[I-qA]™ = 2:° q'Cryicd! A [GA] < 1

0 The eigenvalues of R and A are connected:

u=1/(1T-gA)

g > 0, M. COrresponds to A,
q <0, U,., corresponds to A,

0 Power method for resolvent matrix gives:

um = (h, [I-gA]"™f)/ (h, [I-gA]"™=Df) -y = 1/(1-gA)

AN=A{2; 9 Ch"t (h, Af)}/{Zy 9" Cpryi-i' (h, ATT)}
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MCM for matrix-vector product

2 In order to compute the scalar product (h, A™f) = hTAmf
we have to construct:

Markov chain: ky - k; —... = k., (1< k, < n)
with initial and transition density:
Po = 1/n, pug= 1/n (crude MCM)

P = [hol /=17 [hgl; Pog = laggl/=1" 12gg!;
Random variable 0 = (h,,/Pro)Wmfio
Whel’e WOZ] y WJ — W.j_](ak_j—]k_j/pk_j—]k_j)’ J:] .

EO = hTA™f ~ 1/N =N (8),
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QMCM for matrix-vector product

2 hTAIf in an (i+1)-dimensional integral

a Define the sets G=[0,n), G;=[i-1,i), i=1,...,n, and the
piece wise continuous functions f(x)=f, xe G;, i=1,...n,
a(x,y)=a;, Xe G;, ye G, i,j=1,...,n, h(x)=h;, xe G,
i=1,...,N.

0 We choose p(x)=p;, x€ G;, (Zp;=1), p(x,y)= p;, X€ G;, y&

0 PYoY1s--+ Y)=PYoIPYosY1)---PLYisYi)

a hTAf =g, ... [aPiYosY1s--5 ¥) h(Yo) alYo,Y1)-- alYig,Yi)--f(yi)
dyody]...cP )
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Numerical results

0 Accuracy vs number of walks for computing hTAkf for k=
and k=10 (n = 1280)
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Numerical tests: solving SLAE
(n=1024)
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Numerical tests: Resolvent method for largest
eigenvalue (n=1024)

Relative Error versus Length of Markov Chain

(matrix of order 2000)
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0 Randomized QMCMs are suitable for Markov chain based
problems:

0 Improved 2D projections (necessary for Neumann series)
0 Automatic error estimation

0 The simplified algorithms for scrambled Sobol and Halton
sequences are 10 times faster than PRNs generators

0 Show excellent parallel performance for integral (up to
dimension 100) and integral equations on various
computing environments (clusters, supercomputer, GPU)

0 More experiments in LA problems have to be performed
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