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Introduction 

 Stochastic numerical methods (Monte Carlo methods) are 
based on simulation of random variables/processes and 
estimation of their statistical properties. They have some 
advantages for high dimensional problems, problems in 
complicated domains or when we are interested in part of 
the solution. 

 Quasi-Monte Carlo methods are deterministic methods 
which use low discrepancy sequences. For some problems 
they offer higher precision and faster convergence.  

 Randomized quasi-Monte Carlo methods use randomized 
(scrambled) quasirandom sequences. They combine the 
advantages of Monte Carlo and quasi-Monte Carlo. 
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Markov chain based problems 

 Consider the following problem :  

  u = Ku + f 

• The formal solution is the truncated Neumann series (for ||K||<1): 

           uk+1 = f + Kf + …+ Kk-1f + Kku0 

          with truncation error uk - u = Kk  ( u0 – u).  

• Two main types of the operator K: 
• (i) K is an n x n matrix, u and f  are vectors; 

• (ii) K is an integral transformation 

 Compute the scalar product J(u) = (h,u), h – given vector 

 Define r.v. θ such that E[θ] = J(u): 

      θ[h] = h(ξ0)/π(ξ0) Σj=0
∞ Qjf(ξj), j=1,2,… 

    Here ξ0, ξ1, … is a Markov chain (random walk) in G with initial density π(x) and 
transition density p(x,y), which is equal to the normalized kernel of the integral 
operator.  

 We have to estimate the mathematical expectation 
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MCM accuracy  

 The MCM convergence rate is N-1/2 with sample size N (ε ≈ σ(θ)N-1/2);  

 Probabilistic result – there is no absolute upper bound. 

 The statistical distribution of the error is a normal random variable.  

 The MCM error and the sample size are connected by: 

       ε = O(σ N-1/2), N = O(σ/ε)2 

 The computing time is proportional to N, i.e., it increases very fast if 
a better accuracy is needed.  

 How to increase the convergence: 
 Variance reduction 

 Change of the underlying sequence 

 In this talk we consider improvement through sequence optimization  
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Quasirandom sequences 

 The quasirandom sequences are deterministic sequences constructed 
to be as uniform as mathematically possible (and, as a consequence, 
to ensure better convergence for the integration) 

 The uniformity is measured in terms of discrepancy which is defined 
in the following way: For a sequence with N points in [0,1]s  define  

RN(J) = 1/N#{xn in J}-vol(J) for every J ⊂ [0,1]s 

DN* = supE* |RN(J)|,   

E* - the set of all rectangles with a vertex in zero. 

 A sequence is called quasirandom if 

            DN* ≤ c(log N)s N-1 

 Koksma-Hlawka inequality (for integration):  

                  ε[f] ≤ V[f] DN*   

 (where V[f] is the variation in the sense of Hardy-Kraus) 

 The order of the error is О((log N)s N-1) 
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Quasirandom walk 

 Quasirandom walk error:  

  δ (ζ) = limN→∞( ζ(ωi) - ∫Ω ζ(ω)dμ(ω))  

 where ζ(ωi) – the estimated variable is the analog of r.v.; ωi – an element of the 
quasirandom walks space  

 Chelson’s theorem for quasirandom walks : 

           δN (ζ(Q’)) ≤ V(ζ ∘ Γ-1). (D*N(Q)) 

      where Q = {γi} is a sequence of vectors in [0,1)dT, Q’ = {ωi} is a sequence of 
quasirandom walks generated from Q by the mapping Γ;   

 There is a convergence 

 Impractical error as: 

             D*N = O((log N)dT/N), where d is the dimension of the original problem and T is the 
length of the chain 
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PRNs and QRNs 
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Quasirandom Sequences and their scrambling 

 Star discrepancy:  

 Quasirandom sequences: DN
* < c (logN)s N-1 

 Random numbers: DN
* = O ((loglog N)-1/2 N-1/2) 

 A few quasirandom sequences are currently widely used: 
Halton, Faure, Niederreiter and Soboĺ 

 Unfortunately, the coordinates of the points  in high 
dimensions show correlations. A possible solution to this 
problem is the so-called scrambling. 

 The purpose of scrambling:  

 To improve 2-D projections and the quality of quasirandom 
sequences in general 

 To provide practical method to obtain error estimates for QMC 

 To provide simple and unified way to generate quasirandom 
numbers for parallel, distributed and grid-based computing 
environments 

 To provide more choices of QRN sequences with better (often 
optimal) quality to be used in QMC applications 



Scrambling techniques 

 Scrambling was first proposed by Cranley and Patterson (1979) who 
took lattice points and randomized them by adding random shifts to 
the sequences. Later, Owen (1998, 2002, 2003) and Tezuka (2002) 
independently developed two powerful scrambling methods through 
permutations 

 Although many other methods have been proposed, most of them are 
modified or simplified Owen or Tezuka schemes (Braaten and Weller, 
Atanassov, Matousek, Chi and Mascagni, Warnock, etc.) 

 There are two basic scrambling methods: 

 Randomized shifting 

 Digital permutations 

 The problem with Owen scrambling is its computational complexity 
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Scrambling 

 Digital permutations: Let (x(1)
n, x

(2)
n, . . . , x

(s)
n) be any 

quasirandom number in [0, 1)s, and (z(1)
n, z

(2)
n, . . . , 

z(s)
n) is its scrambled version. Suppose each x(j)

n has a b-
ary representation x(j)

n, =0. x(j)
n1 x

(j)
n2 … x(j)

nK, … with K 
defining the number of digits to be scrambled. Then 

  z(j)
n = σ(x(j)

n ), where σ={Φ1, …, ΦK} и Φi, is a 
uniformly chosen permutation of the digits {0,1,…,b-1}. 

 Randomized shifting has the form 

   zn = xn  + r (mod 1), 

 where xn is any quasirandom number in [0, 1)s and r is a 
single s-dimensional pseudorandom number. 
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The Halton Sequence 

 Let n be an integer presented in base p. The p-ary radical 
inverse function is defined as  

 

      
    where  p  is prime and  bi    comes from  

 

                                                                                           with 0  bi < p 
 

 An s-dimensional Halton sequence is defined as:  
 

 
with   p1  p2  …., ps   being relatively prime, and usually the first  s  primes 

  

 



Two-dimensional projection of Halton 
sequence and scrambled Halton 

sequence (dimension 3) 
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Two-dimensional projection of Halton 
sequence and scrambled Halton sequence 

(dimension 8)  
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Two-dimensional projection of Halton 
sequence and scrambled Halton sequence 

(dimension 50) 
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Two-dimensional projection of Halton 
sequence and scrambled Halton sequence 

(dimension 99) 
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The Faure sequence 

 Faure sequence (x1, x2,…, x3,…), 1982 

xn=(Φb(P
0n), Φb(P

1n), …, Φb(P
s-1n))  

where the generator matrix P is the Pascal matrix modulo b, 
i.e. P(i,j) = Ci-1

j-1 mod b 

 Generalized Faure sequence, Gfaure (Tezuka, 1994-95) 

xn=(Φb(A
(1)P0n), Φb(A

(2)P1n), …, Φb(A
(s)Ps-1n)),  

where A(j) is arbitrary non-singular lower triangular matrices 

 A special case (Faure, 2000) for A: all entries are equal to 1 for all 
j’s 

 Scrambled Faure sequence 
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Scrambled Faure Sequence 

 Owen scrambling (Owen 1995, 2000, 2003) 

 Random linear scrambling (Matousek, 1997) 

xn=(Φb(A
(1)P0n+g1), Φb(A

(2)P1n+g2), …, Φb(A
(s)Ps-1n+gs),  

where A’s are different random scrambling matrices and g’s 
are different random shifts vectors 

 Faure sequence with I-binomial scrambling 

 I-binomial refers to a property of the generator matrices 

 Nonlinear scrambling Vanderwoerstyne&Chi, 2010)  

xn
(j)=(Φb(A

(j)Ψ(P0n)+gj), 

where Ψ is a bijection that maps the non-zero digits of a digit 
vector to their multiplicative inverse modulo b and leaves 
the zero-digits unchanged. 
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Full scrambling 
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 Owen type of scrambling preserves the star discrepancy but is very 
time consuming 

 We have developed GPU-based algorithms for Owen type of 
scrambling for Sobol (2010, Atanassov, Karaivanova, Ivanovska) and 
for Halton (2013, Atanassov and Durchova) 

 With these algorithms we achieved a reasonable time to produce the 
scrambled sequences 



QMCM application in LA 

 Given a matrix A (n x n) and n-dimensional vector f, 
consider the problems: 

 Find the scalar product (g,x) of the unknown solution of a 
system of linear algebraic equations with a given vector, 
where the system is: 

                 x = Ax + f 

 Find an element of the inverse matrix C = A-1 

 Estimate the eigenpairs (λ,x), x∈Rn , such that  

                     Ax=λx 

 

AMITANS 2013, 24-29 July, Albena                          



Neumann series for SLAE 

 Consider  x=Ax+f, all eigenvalues of A lie within unit 
square 

 The truncated Neumann series gives the approximate 
solution of the system (given x(0) ): 

 x(k) = f + Af + A2f+ … Akx(0), k>0 

 The problem: estimate (h,x), where h – given vector: 

     (h,x) ≈ hT f + hT Af + hT A2f+ … hT Akx(0)  

 We can apply MCM and QMC for matrix-vector products 
estimation 

 

AMITANS 2013, 24-29 July, Albena                          



Power method for largest 
eigenvalue 

 Consider the eigenvalue problem: 

  Au = λu , A∈Rnxn, u∈Rn 

  |λ1| >|λ2| ≥ … ≥|λn-1|> |λn|. 

 The power method: 

  xm = Axm-1/ ||Axm-1|| 

 λ(m) = (h, Amf)/ (h, Am-1f) →λmax 

 We can apply MCM and QMCM to estimate matrix-vector 
products 
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Power method for resolvent 
matrix 

 Resolvent matrix associated with A: Rq=[I-qA]-1 ∈ Rnxn  

 [I-qA]-m = ∑1
∞ qi Cm+i-1

i Ai, |qλ| < 1 

 The eigenvalues of R and A are connected: 
   μ = 1/(1-qλ) 

 q > 0, μmax corresponds to λmax 

 q < 0, μmax corresponds to λmin 

 Power method for resolvent matrix gives:  

μ(m) = (h, [I-qA]-mf)/ (h, [I-qA]-(m-1)f) → μ = 1/(1-qλ) 

λ = {∑1 q
i Cm+i-2

i-1 (h, Ai f)}/{∑0 q
i Cm+i-1

i (h, Ai f)} 
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MCM for matrix-vector product 

 In order to compute the scalar product (h, Amf) = hTAmf, 
we have to construct: 

Markov chain: k0 → k1 →… → km  (1≤ ki ≤ n) 

 with initial and transition density: 

 pα = 1/n,  pαβ = 1/n (crude MCM) 

 pα = |hα|/∑1
n |hα|; pαβ = |aαβ|/∑1

n |aαβ|;  

Random variable θ = (hk0/pk0)Wmfk0  

 where W0=1, Wj = Wj-1(akj-1kj
/pkj-1kj

), j=1,…,m 

  

Eθ = hTAmf ≈ 1/N ∑1
N (θ)s 
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QMCM for matrix-vector product 

 hTAif in an (i+1)-dimensional integral 

 Define the sets G=[0,n), Gi=[i-1,i), i=1,…,n, and the 
piece wise continuous functions f(x)=fi, x∈ Gi, i=1,…n, 
a(x,y)=aij, x∈ Gi, y∈ Gj, i,j=1,…,n, h(x)=hi, x∈ Gi, 
i=1,…,n. 

 We choose p(x)=pi, x∈ Gi, (∑pi=1), p(x,y)= pij, x∈ Gi, y∈ 
Gj, (∑pij=1), then: 

 p(y0,y1,…, yi)=p(y0)p(y0,y1)…p(yi,yi)  

 hTAif =∫G0
 … ∫Gi

pi(y0,y1,…, yi) h(y0) a(y0,y1)… a(yi-1,yi)…f(yi) 
dy0dy1…dyi) 

 hN
TAN

ifN – 1/N ∑…≤ |h|T|A|i|f|DN*(y0,y1,…, yi) 
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Numerical results 

 

 Accuracy vs number of walks for computing hTAk f for k=5 
and k=10 (n = 1280) 
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Numerical tests: solving SLAE 
(n=1024) 
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Numerical tests: Resolvent method for largest 
eigenvalue (n=1024) 

AMITANS 2013, 24-29 July, Albena                          



Conclusion 

 Randomized QMCMs are suitable for Markov chain based 
problems: 

 Improved 2D projections (necessary for Neumann series) 

 Automatic error estimation 

 The simplified algorithms for scrambled Sobol and Halton 
sequences are 10 times faster than PRNs generators 

 Show excellent parallel performance for integral (up to 
dimension 100) and integral equations on various 
computing environments (clusters, supercomputer, GPU) 

 More experiments in LA problems have to be performed 
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