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Abstract In one of our previous papers we generalized the
Buscher T-dualization procedure. Here we will investigate
the application of this procedure to the theory of a bosonic
string moving in the weakly curved background. We obtain
the complete T-dualization diagram, connecting the theories
which are the result of the T-dualizations over all possible
choices of the coordinates. We distinguish three forms of
the T-dual theories: the initial theory, the theory obtained T-
dualizing some of the coordinates of the initial theory and
the theory obtained T-dualizing all of the initial coordinates.
While the initial theory is geometric, all the other theories are
non-geometric and additionally non-local. We find the T-dual
coordinate transformation laws connecting these theories and
show that the set of all T-dualizations forms an Abelian group.

1 Introduction

T-duality is a property of string theory that was not encoun-
tered in any point particle theory [1–4]. Its discovery was sur-
prising, because it implies that there exist theories, defined for
essentially different geometries of the compactified dimen-
sions, which are physically equivalent. The origin of T-
duality is seen in the possibility that, unlike a point particle,
the string can wrap around compactified dimensions. But,
no matter if one dimension is compactified on a circle of
radius R or rather on a circle of radius l2s /R, where ls is the
fundamental string length scale, the theory will describe the
string with the same physical properties. The investigation of
T-duality does not cease to provide interesting new physical
implications.
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The prescription for obtaining the equivalent T-dual the-
ories is given by the Buscher T-dualization procedure [5,6].
The procedure is applicable along the isometry directions,
which allows the investigation of the backgrounds which do
not depend on some coordinates. It is found that T-duality
transforms geometric backgrounds to the non-geometric
backgrounds with Q flux which are locally well defined, and
these to different types of non-geometric backgrounds, back-
grounds with R flux which are not well defined even locally
[7,8]. A similar prescription can be used to obtain fermionic
T-duality [9,10]. It is argued that the better understanding
of T-duality should be sought for by doubling the coordi-
nates, investigating the theories in which the background
fields depend on both the usual space-time coordinates and
their doubles [11–14], which would make the T-duality a
manifest symmetry.

T-duality enables the investigation of the closed string
non-commutativity. The coordinates of the closed string are
commutative when the string moves in a constant back-
ground. In a 3-dimensional space with the Kalb–Ramond
field depending on one of the coordinates, successive T-
dualizations along isometry directions lead to a theory with
Q flux and the non-commutative coordinates [15–17]. The
novelty in the research is the generalized T-dualization pro-
cedure, realized in [18], addressing the bosonic string mov-
ing in the weakly curved background–constant gravitational
field and coordinate dependent Kalb–Ramond field with an
infinitesimal field strength. The non-commutativity charac-
teristics of a closed string moving in the weakly curved back-
ground was considered in [19].

The generalized procedure is applicable to all the space-
time coordinates on which the string backgrounds depend. In
Ref. [18], it was first applied to all initial coordinates, which
produces a T-dual theory; it was then applied to all the T-dual
coordinates and the initial theory was obtained. In this paper,
we will investigate the application of the generalized T-du-
alization procedure to an arbitrary set of coordinates. Let us
denote the T-dualization along the direction xμ by Tμ and
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the T-dualization along dual direction yμ by Tμ. Choosing d
arbitrary directions, we denote

T a = ◦dn=1T
μn , T i = ◦Dn=d+1T

μn , T = ◦Dn=1T
μn , (1)

Ta = ◦dn=1Tμn , Ti = ◦Dn=d+1Tμn ,
˜T = ◦Dn=1Tμn , (2)

where μn ∈ (0, 1, . . . , D − 1), and ◦ denotes the compo-
sition of T-dualizations. We will apply T-dualizations (1) to
the initial theory, and T-dualizations (2) to its completely T-
dual theory (obtained in [18]). We will prove the following
composition laws:

T i ◦ T a = T , Ti ◦ Ta = ˜T , Ta ◦ T a = 1, (3)

where 1 denotes the identical transformation (T-dualization
not performed). Therefore, the elements 1, T a and Ta , with
d = 1, . . . , D, form an Abelian group. We will find the
explicit form of the resulting theories and the corresponding
T-dual coordinate transformation laws. These results com-
plete the T-dualization diagram connecting all the theories
T-dual to the initial theory.

Throughout the whole article (except for Sect. 9) we
assume that the Kalb–Ramond field depends on all coordi-
nates. In that case all T-dual theories, except the initial theory,
are non-geometric and non-local because they depend on the
variable Vμ, which is a line integral of the derivatives of the
dual coordinates. To all of these theories there corresponds a
flux which is of the same type as the R flux unlike the non-
geometric theories with Q flux, which have a local geometric
description.

In Sects. 9.1 and 9.2, we present an example of the 3-
dimensional torus, T 3 with H-flux, where Kalb–Ramond
field depends only on coordinate x3. Then T-dualizations
along the isometry directions x1 and x2 lead to geometric
background and the T-dualization along x3 leads to non-
geometric background. In Sect. 9.1 putting D = 3, d = 1, 2
with Bμν depending on x3 we reproduce the T-duality chain
of Refs. [15–17].

In Sect. 9.2 we will compare the results of our paper
with those of Ref. [8]. In our manuscript, the background
fields’ argument, the variable Vμ, incorporates all features
of the non-geometric spaces. First, as pointed out in Ref. [8]
it “eludes a geometric description even locally” because it
is a line integral of the derivative. Second, we obtain non-
associativity and breaking of Jacobi identity typical for the
so called R-flux backgrounds. In Sect. 9.3 we present exam-
ple of the 4-dimensional torus T 4 to generalize the case of
Ref. [20] to critical surface.

The generalized T-dualization procedure originates from
the Buscher T-dualization procedure. The first rule in the
prescription is to replace the derivatives with the covariant
derivatives. The new point in the prescription is the replace-
ment of the coordinates in the background fields’ argument

with the invariant coordinates. The invariant coordinates are
defined as the line integrals of the covariant derivatives of the
original coordinates. Both covariant derivatives and invariant
coordinates are defined using the gauge fields. These fields
should be nonphysical, so one requires that their field strength
should be zero. This is realized by adding the corresponding
Lagrange multipliers’ terms. As a consequence of the transla-
tional symmetry one can fix the coordinates along which the
T-dualization is performed and obtain a gauge fixed action.
An important cross-way in the T-dualization procedure is
determined by the equations of motion of the gauge fixed
action. Two equations of motion obtained varying this action
are used to direct the procedure either back to the initial
action or forward to the T-dual action. For the equation of
motion obtained varying the action over the Lagrange mul-
tipliers, the gauge fixed action reduces to the initial action.
For the equation of motion obtained varying the action over
the gauge fields one obtains the T-dual theory. Comparing
the solutions for the gauge fields in these two directions, one
obtains the T-dual coordinate transformation laws.

2 T-duality in the weakly curved background

Let us consider the closed bosonic string propagating in the
background with metric field Gμν , Kalb–Ramond field Bμν

and a dilaton field �, described by the action [3,4]

S[x] = κ

∫

�

d2ξ
√−g

[(1

2
gαβGμν(x) + εαβ

√−g
Bμν(x)

)

×∂αx
μ∂βx

ν + 1

4πκ
�(x)R(2)

]

. (4)

The integration goes over a 2-dimensional world-sheet �

parametrized by ξα (ξ0 = τ, ξ1 = σ ), gαβ is the intrinsic
world-sheet metric, R(2) corresponding 2-dimensional scalar
curvature, xμ(ξ), μ = 0, 1, . . . , D − 1 are the coordinates
of the D-dimensional space-time, κ = 1

2πα′ with α′ being
the Regge slope parameter and ε01 = −1.

2.1 Weakly curved background

The requirement of the quantum conformal invariance of the
world-sheet results in the space-time equations of motion
for the background fields. In the lowest order in the slope
parameter α′ these equations are

Rμν − 1

4
Bμρσ B

ρσ
ν + 2Dμ∂ν� = 0,

DρB
ρ
μν − 2∂ρ�Bρ

μν = 0,

4(∂�)2 − 4Dμ∂μ� + 1

12
BμνρB

μνρ

+4πκ(D − 26)/3 − R = 0. (5)
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Here Bμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν is the field strength
of the field Bμν , and Rμν and Dμ are the Ricci tensor and the
covariant derivative with respect to the space-time metric.
We will consider one of the simplest coordinate dependent
solutions of (5), the weakly curved background. This back-
ground was considered in Refs. [21–23], where the influence
of the boundary conditions on the non-commutativity of the
open bosonic string has been investigated. The same approx-
imation was considered in [16,19] in context of the closed
string non-commutativity.

The weakly curved background is defined by

Gμν(x) = const,

Bμν(x) = bμν + 1

3
Bμνρx

ρ ≡ bμν + hμν(x),

�(x) = const, (6)

with bμν, Bμνρ = const. This background is the solu-
tion of the space-time equations of motion if the constant
Bμνρ is taken to be infinitesimal and all the calculations
are done in the first order in Bμνρ , so that the curvature
Rμν can be neglected as the infinitesimal of the second
order. Through the whole manuscript (with the exception
of Sect. 9) we assume that the background has the topology
of D-dimensional torus T D , where the Kalb–Ramond field
depends on all coordinates. In Sects. 9.1 and 9.2 we give an
example of the 3-dimensional torus, T 3, with H-flux, where
the Kalb–Ramond field depends only on the coordinate x3,
while in Sect. 9.3 we give an example of the 4-dimensional
torus T 4 with constant background fields.

The assumption that Bμνρ is infinitesimal means that we
consider the D-dimensional torus so large that for any choice
of indices

Bμνρ

RμRνRρ

� 1 (7)

holds [16], where Rμ are the radii of the torus. The H -
flux background, considered in Refs. [8,16], is of the same
type as the weakly curved background. However, this back-
ground depends just on x3 and corresponds to the examples
addressed in Sect. 9 of our paper. The background considered
in the rest of the article depends on all coordinates.

In this paper we will investigate the T-dualization proper-
ties of the action (4) describing the closed string moving in
the weakly curved background. Taking the conformal gauge
gαβ = e2Fηαβ , the action (4) becomes

S[x] = κ

∫

�

d2ξ ∂+xμ�+μν(x)∂−xν, (8)

with the background field composition equal to

�±μν(x) = Bμν(x) ± 1

2
Gμν(x), (9)

and the light-cone coordinates given by

ξ± = 1

2
(τ ± σ), ∂± = ∂τ ± ∂σ . (10)

2.2 Complete T-dualization

The T-dualization of the closed string theory in the weakly
curved background was presented in [18]. The procedure is
related to a global symmetry of the theory

δxμ = λμ. (11)

The symmetry still exists in the presence of the nontrivial
Kalb–Ramond field (6), but only in the case of the trivial
mapping of the world-sheet into the space-time, because in
that case the variation of the action (8)

δS = κ

3
εαβBμνρλρ

∫

d2ξ∂αx
μ∂βx

ν (12)

after partial integration, using the identity εαβ∂α∂β = 0,
becomes

δS = κ

3
Bμνρλρεαβ

∫

d2ξ∂α(xμ∂βx
ν), (13)

which is equal to zero. This means that classically, directions
which appear in the argument of Kalb–Ramond field are also
Killing directions. However, the standard Buscher procedure
cannot be applied to them, because background fields depend
on the coordinates but not on their derivatives.

The T-dual picture of the theory, obtained on applying the
T-dualization procedure to all the coordinates, is given by

S[y] = κ

∫

d2ξ ∂+yμ
��

μν
+
(

�V (y)
)

∂−yν

= κ2

2

∫

d2ξ ∂+yμ�
μν
−
(

�V (y)
)

∂−yν, (14)

where

�
μν
± ≡ − 2

κ
(G−1

E �±G−1)μν = θμν ∓ 1

κ
(G−1

E )μν, (15)

with

GEμν ≡ Gμν − 4(BG−1B)μν,

θμν ≡ − 2

κ
(G−1

E BG−1)μν, (16)

being the effective metric and the non-commutativity param-
eter in Seiberg–Witten terminology of the open bosonic string
theory [24]. The T-dual background fields are equal to

�Gμν
(

�V (y)
) = (G−1

E )μν
(

�V (y)
)

,

�Bμν
(

�V (y)
) = κ

2
θμν

(

�V (y)
)

, (17)
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and their argument is given by

�Vμ(y) = −κ

2

(

�
μν
0− + �

μν
0+
)

�yν

+κ

2

(

�
μν
0− − �

μν
0+
)

�ỹν

= −κθ
μν
0 �yν + (g−1)μν�ỹν . (18)

Here �
μν
0± is the zeroth order value of the field composition

�
μν
± defined in (15) and gμν = Gμν − 4b2

μν and θ
μν
0 =

− 2
κ
(g−1bG−1)μν are the zeroth order values of the effective

fields (16). The variable�ỹμ is the double of the dual variable
�yμ = yμ(ξ)−yμ(ξ0), defined as the following line integral:

�ỹμ =
∫

P
(dτ y′

μ + dσ ẏμ) =
∫

P
dξαεβ

α∂β yμ, (19)

taken along the path P , from the point ξα
0 (τ0, σ0) to the point

ξα(τ, σ ).
The fact that we are working with the weakly curved

background ensures that the T-dual background fields are the
solution of the space-time equations (5). Because both dual
metric �Gμν and dual Kalb–Ramond field �Bμν are linear in
coordinates with infinitesimal coefficients, the dual Christof-
fel symbol ��

νρ
μ and dual field strength �Bμνρ are constant

and infinitesimal. In Eq. (114) of Sect. 8 we will show that
T-dual dilaton field is •� = � − ln det

√
2�+, where �

is constant and �+ is linear in coordinates with infinitesi-
mal coefficients. So, •� is also linear in coordinates with
infinitesimal coefficients, and ∂μ

•� is constant and infinites-
imal. Consequently, Dμ∂ν

•�, ∂ρ
•�Bρ

μν and (∂μ
•�)2 are

infinitesimals of the second order. So, all T-dual space-time
equations, for the metric, for the Kalb–Ramond field and for
dilaton field, are infinitesimals of the second order and as
such are neglected.

The initial theory (8) and its completely T-dual theory (14)
are connected by the T-dual coordinate transformation laws
(eq. (42) of Ref. [18])

∂±xμ = −κ�μν
(

�V
)

∂±yν ∓ 2κ�
μν
0±β∓

ν

(

V
)

, (20)

and its inverse (eq. (66) of Ref. [18])

∂±yμ ∼= −2�∓μν(�x)∂±xν ∓ 2β∓
μ (x), (21)

where β±
μ (x) = ∓ 1

2hμν(x)∂∓xν . It is shown that

T : S[xμ] → S[yμ], ˜T : S[yμ] → S[xμ], (22)

and therefore

T ◦ ˜T = 1. (23)

3 T-dualization along arbitrary subset of coordinates
T a : S[xµ] → S[xi , ya]

In this section, we will learn what theory is obtained if one
chooses to apply the T-dualization procedure to the action (8),
along arbitrary d coordinates xa , T a : S[xμ] → S[xi , ya],
with T a = ◦dn=1T

μn , μn ∈ (0, 1, . . . , D − 1).
The closed string action in the weakly curved background

(6) has a global symmetry (11). One localizes the symmetry
for the coordinates xa , by introducing the gauge fields vaα
and substituting the ordinary derivatives with the covariant
derivatives

∂αx
a → Dαx

a = ∂αx
a + vaα. (24)

The covariant derivatives are invariant under standard gauge
transformations

δvaα = −∂αλa . (25)

In the case of the weakly curved background, in order to
obtain the gauge invariant action one should additionally sub-
stitute the coordinates xa in the argument of the background
fields with their invariant extension, defined by

�xainv ≡
∫

P
dξα Dαx

a =
∫

P
(dξ+D+xa + dξ−D−xa)

= xa − xa(ξ0) + �V a, (26)

where

�V a ≡
∫

P
dξαvaα =

∫

P
(dξ+va+ + dξ−va−). (27)

To preserve the physical equivalence between the gauged and
the original theory, one introduces the Lagrange multipliers
ya and adds term 1

2 ya F
a+− to the Lagrangian, which will force

the field strength Fa+− ≡ ∂+va− − ∂−va+ = −2Fa
01 to vanish.

In this way, the gauge invariant action

Sinv[xμ, xainv, ya]
= κ

∫

d2ξ
[

∂+xi�+i j
(

xi ,�xainv

)

∂−x j

+ ∂+xi�+ia
(

xi ,�xainv

)

D−xa

+ D+xa�+ai
(

xi ,�xainv

)

∂−xi

+ D+xa�+ab
(

xi ,�xainv

)

D−xb

+ 1

2
(va+∂−ya − va−∂+ya)

]

(28)

is obtained, where the last term is equal to 1
2 ya F

a+− up to the
total divergence. Now, we can fix the gauge taking xa(ξ) =
xa(ξ0) and obtain the gauge fixed action

Sfix[xi , va±, ya]
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= κ

∫

d2ξ
[

∂+xi�+i j
(

xi ,�V a)∂−x j

+ ∂+xi�+ia
(

xi ,�V a)va− + va+�+ai
(

xi ,�V a)∂−xi

+ va+�+ab
(

xi ,�V a)vb− + 1

2
(va+∂−ya − va−∂+ya)

]

.

(29)

This action reduces to the initial one for the equations of
motion obtained varying over the Lagrange multipliers. The
T-dual action is obtained for the equations of motion for the
gauge fields.

3.1 Regaining the initial action

Varying the gauge fixed action (29) over the Lagrange mul-
tipliers ya one obtains the equations of motion

∂+va− − ∂−va+ = 0, (30)

which have the solution

va± = ∂±xa . (31)

On this solution the background fields’ argument �V a

defined in (27) is path independent and reduces to

�V a(ξ) = xa(ξ) − xa(ξ0). (32)

The gauge fixed action (29) reduces to the initial action (8),
but the background fields’ argument is �Va instead of xi .
However, the action (8) is invariant under the constant shift
of coordinates, so shifting coordinates by xa(ξ0) one obtains
the exact form of the initial action.

3.2 The T-dual action

Using the equations of motion for the gauge fields, we elim-
inate them and obtain the T-dual action.

The equations of motion obtained varying the gauge fixed
action (29) over the gauge fields va± are

�±ai
(

xi ,�V a)∂∓xi + �±ab
(

xi ,�V a)vb∓ + 1

2
∂∓ya

= ±β±
a

(

xi , V a), (33)

where

β±
a

(

xi , V a) = ∓1

2

[

hai (x
i )∂∓xi + hab(x

i )∂∓V b

+hai
(

V a)∂∓xi + hab
(

V a)∂∓V b
]

(34)

is the contribution from the background fields’ argument
�V a , defined in a same way as in Ref. [18], by δV Sfix =
−κ

∫

d2ξ(β+
a δva+ +β−

a δva−). If the initial background �+μν

does not depend on the coordinates xa , the corresponding
beta functions are zero β±

a = 0.

Multiplying Eq. (33) by 2κ�̃ab∓ , defined in (A.7), the
inverse of the background fields composition �±ab, one
obtains

va∓ = −2κ�̃ab∓
(

xi ,�V a)
[

�±bi
(

xi ,�V a)∂∓xi + 1

2
∂∓yb

∓β±
b

(

xi , V a)
]

. (35)

Substituting (35) into the action (29), we obtain the T-dual
action

S[xi , ya]
= κ

∫

d2ξ

[

∂+xi�+i j
(

xi ,�V a(xi , ya)
)

∂−x j

− κ ∂+xi�+ia
(

xi ,�V a(xi , ya)
)

× �̃ab−
(

xi ,�V a(xi , ya)
)

∂−yb

+ κ ∂+ya�̃
ab−
(

xi ,�V a(xi , ya)
)

×�+bi
(

xi ,�V a(xi , ya)
)

∂−xi

+ κ

2
∂+ya�̃

ab−
(

xi ,�V a(xi , ya)
)

∂−yb

]

, (36)

where

�+i j ≡ �+i j − 2κ�+ia�̃
ab− �+bj . (37)

In order to find the explicit value of the background fields
argument �V a(xi , ya), it is enough to consider the zeroth
order of the equations of motion for the gauge fields va± (35)

v
(0)a
± = −2κ�̃ab

0±
[

�0∓bi∂±x (0)i + 1

2
∂±y(0)

b

]

. (38)

Here �̃ab
0± and �0∓bi stand for the zeroth order values of �̃ab±

and �∓bi , and they are defined in (A.11).
Substituting (38) into (27) we obtain

�V (0)a(xi , ya)

= −κ
[

�̃ab
0+�0−bi + �̃ab

0−�0+bi

]

�x (0)i

−κ
[

�̃ab
0+�0−bi − �̃ab

0−�0+bi

]

�x̃ (0)i

−κ

2

[

�̃ab
0+ + �̃ab

0−
]

�y(0)
b − κ

2

[

�̃ab
0+ − �̃ab

0−
]

�ỹ(0)
b . (39)

Here

�ỹ(0)
a =

∫

P
(dτ y(0)′

a + dσ ẏ(0)
a ),

�x̃ (0)i =
∫

P
(dτ x (0)′i + dσ ẋ (0)i ), (40)

are the variables T-dual to the coordinates ya and xi in the
zeroth order in Bμνρ , for bμν = 0, which we call the double
variables.
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Thus, we obtain the explicit form of the T-dual action
and conclude that it is given in terms of the original coor-
dinates xi and the dual coordinates ya originating from the
Lagrange multipliers. However, the background fields’ argu-
ment depends not only on these variables but on their doubles
as well. Because of this the theory is non-local as the double
variables x̃ i and ỹa are defined as line integrals.

The action (36) can be obtained from the initial action (8)
under the following substitutions of the coordinate deriva-
tives and the background fields:

∂±xi → ∂±xi , ∂±xa → ∂±ya, (41)

�+i j → •�+i j , �+ia → •� a
+i ,

�+ai → •�a
+i , �+ab → •�ab+ , (42)

where the dual background fields are

•�+i j = �+i j ,
•� a

+i = −κ�+ib�̃
ba− ,

•�a
+i = κ�̃ab− �+bi ,

•�ab+ = κ

2
�̃ab− , (43)

with�+i j ,�+μν , and �̃ab− defined in (37), (9), and (A.7). The
argument of all T-dual background fields is [xi , V a(xi , ya)].
According to (27) and (39), it is non-local and consequently
non-geometric. Calculating the symmetric and antisymmet-
ric part of the T-dual field compositions (43), we find that the
T-dual metric and Kalb–Ramond field are equal to

•Gi j = Gi j = Gi j − Gia(G̃
−1
E )abGbj

−2κ
(

Bia θ̃
abGbj + Gia θ̃

abBbj

)

− 4Bia(G̃
−1
E )abBbj ,

•Bi j = Bi j = Bi j − κ

2
Gia θ̃

abGbj − Bia(G̃
−1
E )abGbj

−Gia(G̃
−1
E )abBbj − 2κBia θ̃

abBbj ,

•Gab = (G̃−1
E )ab,

•Bab = κ

2
θ̃ab,

•Ga
i = κθ̃abGbi + 2(G̃−1

E )abBbi ,

•Ba
i = κθ̃abBbi + 1

2
(G̃−1

E )abGbi , (44)

where G̃Eab and θ̃ab are defined in (A.6) and (A.10). The
T-dual background fields have the same form as in the flat
background [1,5,25] but in the present case fields Bμν , G̃−1ab

E
and θ̃ab are coordinate dependent.

Comparing the solutions for the gauge fields (31) and (35),
we obtain the T-dual coordinate transformation law

∂∓xa ∼= −2κ�̃ab∓
(

xi ,�V a(xi , ya)
)

×
[

�±bi
(

xi ,�V a(xi , ya)
)

∂∓xi + 1

2
∂∓yb

∓β±
b

(

xi , V a(xi , ya)
)

]

. (45)

4 Inverse T-dualization Ta : S[xi , ya] → S[xµ]

In this section we will show that T-dualization of the action
S[xi , ya], given by (36), along already treated directions ya
leads to the original action.

So, let us localize the global symmetry of the coordinates
ya

δya = λa, (46)

of the action (36). Note that this is the symmetry, despite the
coordinate dependence of the metric (44), due to the invari-
ance of the background fields’ argument [18]. Following the
T-dualization procedure, we substitute the ordinary deriva-
tives with the covariant ones

D±ya = ∂±ya + u±a, (47)

where u±a are gauge fields which transform as δu±a =
−∂±λa . We also substitute coordinates ya in the background
fields’ argument with the invariant coordinates

yinv
a =

∫

P
(dξ+D+ya + dξ−D−ya)

= ya(ξ) − ya(ξ0) + �Ua, (48)

where

�Ua =
∫

P
(dξ+u+a + dξ−u−a). (49)

In this way, adding the Lagrange multiplier term which makes
the introduced gauge fields nonphysical, we obtain the gauge
invariant action

Sinv[xi , ya, yinv
a , za]

= κ

∫

d2ξ

[

∂+xi�+i j
(

xi ,�V a(xi , yinv
a )

)

∂−x j

− κ ∂+xi�+ia
(

xi ,�V a(xi , yinv
a )

)

× �̃ab−
(

xi ,�V a(xi , yinv
a )

)

D−yb

+ κ D+ya�̃
ab−
(

xi ,�V a(xi , yinv
a )

)

×�+bi
(

xi ,�V a(xi , yinv
a )

)

∂−xi

+ κ

2
D+ya�̃

ab−
(

xi ,�V a(xi , yinv
a )

)

D−yb

+ 1

2
(u+a∂−za − u−a∂+za)

]

, (50)

which after fixing the gauge by ya(ξ) = ya(ξ0) becomes

Sfix[xi , u±a, z
a]

= κ

∫

d2ξ

[

∂+xi�+i j
(

xi ,�V a(xi ,�Ua)
)

∂−x j

− κ ∂+xi�+ia
(

xi ,�V a(xi ,�Ua)
)

× �̃ab−
(

xi ,�V a(xi ,�Ua)
)

u−b
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+ κ u+a�̃
ab−
(

xi ,�V a(xi ,�Ua)
)

×�+bi
(

xi ,�V a(xi ,�Ua)
)

∂−xi

+ κ

2
u+a�̃

ab−
(

xi ,�V a(xi ,�Ua)
)

u−b

+ 1

2
(u+a∂−za − u−a∂+za)

]

, (51)

where �V a is defined in (39) and �Ua in (49).

4.1 Regaining the T-dual action

The equations of motion obtained varying the gauge fixed
action (51) over the Lagrange multipliers za

∂+u−a − ∂−u+a = 0, (52)

have the solution

u±a = ∂±ya . (53)

On this solution the variable �Ua defined by (49) is path
independent and reduces to

�Ua(ξ) = ya(ξ) − ya(ξ0), (54)

and the gauge fixed action (51) reduces to the action (36).

4.2 Regaining the initial action

The equations of motion obtained varying the gauge fixed
action (51) over the gauge fields u±a are

κ�̃ab∓
(

xi ,�V a(xi ,�Ua)
)

×
[1

2
u∓b + �±bi

(

xi ,�V a(xi ,�Ua)
)

∂∓xi
]

+ 1

2
∂∓za

= ±κ�̃ab
0∓β±

b

(

xi , V a(xi ,Ua)
)

, (55)

where terms �̃ab
0∓β±

b are the contribution from the variation
over the background field argument

δU Sfix = −κ2
∫

d2ξ
(

δu+a�̃
ab
0−β+

b + δu−a�̃
ab
0+β−

b

)

. (56)

Here β±
a is of the same form as (34) and �̃ab

0∓ is defined in
(A.11).

Let us show that for the equations of motion (55), the
gauge fixed action (51) will reduce to the initial action (8).
Using the fact that �̃ab∓ is inverse to 2κ�±ab, these equations
of motion can be rewritten as

u∓a = −2�±ai
(

xi ,�V a(xi ,�Ua)
)

∂∓xi

−2�±ab
(

xi ,�V a(xi ,�Ua)
)

∂∓zb

±2β±
a

(

xi , V a(xi ,Ua)
)

. (57)

Substituting (57) into (51), using the definition (37) and the
first relation in (A.22) one obtains

S[xi , za]
= κ

∫

�

d2ξ
[

∂+xi�+i j∂−x j + ∂+xi�+ia∂−za

+ ∂+za�+ai∂−xi + ∂+za�+ab∂−zb
]

. (58)

The explicit form of the argument of the background fields
is obtained substituting the zeroth order of Eq. (57) into (49)

U (0)
a = −2bai x

(0)i +Gai x̃
(0)i − 2babz

(0)b +Gabz̃
(0)b. (59)

Consequently, the argument of the background fields �V a ,
defined in (39), is just

V (0)a(xi ,Ua) = za . (60)

So, the action (58) is equal to the initial action (8) with xμ =
(xi , za).

Comparing the solutions for the gauge fields (53) and (57),
we obtain the T-dual transformation law

∂∓ya ∼= −2�±ai (x
i , za)∂∓xi − 2�±ab(x

i , za)∂∓zb

±2β±
a

(

xi , za
)

. (61)

Substituting ∂∓ya to (45) with the help of (60) one finds
∂±xa = ∂±za . Therefore, (61) is the transformation inverse
to (45), which confirms the relation T a ◦ Ta = 1.

5 T-dualization along all undualized coordinates
T i : S[xi , ya] → S[ yµ]

In this section we will T-dualize the action (36), applying
the T-dualization procedure to the undualized coordinates xi .
Substituting the ordinary derivatives ∂±xi with the covariant
derivatives

D±xi = ∂±xi + wi±, (62)

where the gauge fields wi± transform as δwi± = −∂±λi , sub-
stituting the coordinates xi in the background field arguments
with

�xiinv =
∫

P
(dξ+D+xi + dξ−D−xi ), (63)

and adding the Lagrange multiplier term, we obtain the gauge
invariant action

Sinv[xi , xiinv, y]
= κ

∫

d2ξ

[

D+xi�+i j
(

�xiinv,�V a(�xiinv, ya)
)

D−x j

− κ D+xi�+ia
(

�xiinv,�V a(�xiinv, ya)
)

123
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× �̃ab−
(

�xiinv,�V a(�xiinv, ya)
)

∂−yb

+ κ ∂+ya�̃
ab−
(

�xiinv,�V a(�xiinv, ya)
)

×�+bi
(

�xiinv,�V a(�xiinv, ya)
)

D−xi

+ κ

2
∂+ya�̃

ab−
(

�xiinv,�V a(�xiinv, ya)
)

∂−yb

+ 1

2
(wi+∂−yi − wi−∂+yi )

]

. (64)

Substituting the gauge fixing condition xi (ξ) = xi (ξ0) one
obtains

Sfix[xi , wi±, y]
= κ

∫

d2ξ

[

wi+�+i j
(

�W
)

w
j
−

− κ wi+�+ia
(

�W
)

�̃ab−
(

�W
)

∂−yb

+ κ ∂+ya�̃
ab−
(

�W
)

�+bi
(

�W
)

wi−
+ κ

2
∂+ya�̃

ab−
(

�W
)

∂−yb

+ 1

2
(wi+∂−yi − wi−∂+yi )

]

, (65)

where �Wμ = [

�Wi ,�V a(�Wi , ya)
]

with �Wi defined
by

�Wi ≡
∫

P
(dξ+wi+ + dξ−wi−), (66)

and �V a = �V a(�Wi , ya) is defined in (39), where argu-
ment xi is replaced by �Wi .

5.1 Regaining the T-dual action

The equations of motion for the Lagrange multipliers yi are

∂+wi− − ∂−wi+ = 0, (67)

and they have the solution

wi± = ∂±xi . (68)

For this solution the background field argument �Wi defined
in (66) reduces to

�Wi (ξ) = xi (ξ) − xi (ξ0), (69)

so that the argument �Va becomes

�V a(�Wi , ya) = �V a(xi , ya), (70)

and therefore the gauge fixed action (65) reduces to the action
(36).

5.2 From the gauge fixed action to the completely T-dual
action

The equations of motion obtained varying the gauge fixed
action (65) over wi± are

�±i j (�W )w
j
∓ − κ�±ia(�W )�̃ab∓ (�W )∂∓yb + 1

2
∂∓yi

= ±2κ�±i j�
jμ
∓ β±

μ (W ), (71)

where

β±
μ (V ) = ∓1

2
hμν(V )∂∓V ν . (72)

Terms �±i j�
jμ
∓ β±

μ (W ) are the contribution from the back-
ground fields’ argument, defined by

δU Sfix = −2κ2
∫

d2ξ
(

δwi+�+i j�
jμ
− β+

μ

+δwi−�−i j�
jμ
+ β−

μ

)

, (73)

calculated using (A.15), (A.16), and (39).
Using the fact that the background field composition �±i j

is invese to 2κ�
i j
∓ defined by (A.22), we can rewrite the

equation of motion (71) expressing the gauge fields as

wi∓ = 2κ�
i j
∓(�W )

[

κ�± ja(�W )�̃ab∓ (�W )∂∓yb

−1

2
∂∓y j

]

± 2κ�
iμ
0±β±

μ (W ). (74)

Using the second relation in (A.23), we obtain

wi∓ = −κ�
iμ
∓ (�W )

[

∂∓yμ ∓ 2β±
μ (W )

]

. (75)

Substituting (75) into the gauge fixed action (65), we
obtain

S[y]
= κ

∫

d2ξ

[

∂+yi
(

κ�
i j
− − κ2�ik−�+kl�

l j
−
)

∂−y j

+
(

− κ2�
i j
−�+ jk�

ka− + κ

2
�ia− − κ2�

i j
−�+ jb�̃

ba−
)

× ∂+yi ∂−ya

+
(

− κ2�
aj
− �+ jk�

ki− + κ

2
�ai− − κ2�̃ab− �+bj�

j i
−
)

× ∂+ya ∂−yi + ∂+ya
(κ

2
�̃ab− − κ2�ai− �+i j�

jb
−

− κ2�ai− �+ic�̃
cb− − κ2�̃ac− �+ci�

ib−
)

∂−yb

]

. (76)

Using (A.22), (A.27), and (A.29) one can rewrite this action
as

S[y] = κ2

2

∫

d2ξ ∂+yμ�
μν
−
(

�W
)

∂−yν . (77)
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In order to find the background fields’ argument �Wi , we
consider the zeroth order of Eqs. (75), and we conclude that

�Wi = −κθ
iμ
0 �yμ + (g−1)iμ�ỹμ. (78)

Using (A.28) and (A.23), we find that �V a(�Wi , ya)
defined in (39) equals

�V a(�Wi , ya) = −κθ
aμ
0 �yμ + (g−1)aμ�ỹμ. (79)

Therefore, we conclude that the background fields’ argument
is equal to (18), so that the action (77) is the completely T-dual
action (14), which is in agreement with Ref. [18]. Comparing
the solutions for the gauge fields (68) and (75), we obtain the
T-dual transformation law

∂∓xi ∼= −κ�
iμ
∓
(

�V (y)
)

[

∂∓yμ ∓ 2β±
μ

(

V (y)
)

]

. (80)

One can verify that two successive T-duality transforma-
tions (45) and (80) correspond to the total T-duality transfor-
mation (20). Indeed, the relation (80) is just the i th compo-
nent of this transformation. Substituting ∂±xi from (80) into
(45), using (A.25) and (A.29), we obtain

∂±xa = −κ�
aμ
±
(

�V
)

[

∂±yμ ± 2β∓
μ

(

V
)

]

,

which is just the ath component of the complete T-duality
transformation. So, we confirm that T a ◦ T i = T .

6 Inverse T-dualization along arbitrary subset of the
dual coordinates Ti : S[ yµ] → S[xi , ya]

Finally, in this section we will show that the T-dualization of
the completely T-dual action (14), along arbitrary subset of
the dual coordinates yi leads to T-dual action (36). So, let us
start with the T-dual action

S[y] = κ2

2

∫

d2ξ ∂+yμ�
μν
−
(

�V (y)
)

∂−yν, (81)

which is globally invariant to the constant shift of coordinates
yμ

δyμ = λμ. (82)

We localize this symmetry for the coordinates yi and obtain
the locally invariant action

Sinv[y, yinv
i , zi ]

= κ2

2

∫

d2ξ
[

D+yi�
i j
−
(

�V (yinv
i , ya)

)

D−y j

+ D+yi�
ia−
(

�V (yinv
i , ya)

)

∂−ya

+∂+ya�
ai−
(

�V (yinv
i , ya)

)

D−yi

+ ∂+ya�
ab−
(

�V (yinv
i , ya)

)

∂−yb

+ 1

κ
(u+i∂−zi − u−i∂+zi )

]

, (83)

where D±yi = ∂±yi + u±i are the covariant derivatives.
The gauge fields u±i transform as δu±i = −∂±λi and the
invariant coordinates are defined by yinv

i = ∫

P (dξ+D+yi +
dξ−D−yi ). After fixing the gauge by yi (ξ) = yi (ξ0), the
action becomes

Sfix[ya, u±i , z
i ]

= κ2

2

∫

d2ξ
[

u+i�
i j
−
(

�V (�Ui , ya)
)

u− j

+ u+i�
ia−
(

�V (�Ui , ya)
)

∂−ya

+ ∂+ya�
ai−
(

�V (�Ui , ya)
)

u−i

+ ∂+ya�
ab−
(

�V (�Ui , ya)
)

∂−yb

+ 1

κ
(u+i∂−zi − u−i∂+zi )

]

, (84)

where �Ui = ∫

P (dξ+u+i + dξ−u−i ).

6.1 Regaining the T-dual action

The equations of motion obtained varying the gauge fixed
action (84) over the Lagrange multipliers

∂+u−i − ∂−u+i = 0, (85)

have the solution

u±i = ∂±yi . (86)

On this solution the variable �Ui reduces to

�Ui (ξ) = yi (ξ) − yi (ξ0), (87)

and therefore

�Vμ(�Ui , ya) = �Vμ(y). (88)

So, the action (84) becomes the action (81).

6.2 Obtaining the T-dual action

The equations of motion obtained varying the action (84)
over u±i are

κ�
i j
∓
(

�V (�Ui , ya)
)

u∓ j + κ�ia∓
(

�V (�Ui , ya)
)

∂∓ya

+∂∓zi = ±2κ�
iμ
0∓β±

μ

(

V (Ui , ya)
)

, (89)

where β±
μ are given by (72). The terms with beta function

come from the variation over the argument Ui

δU Sfix = −κ2
∫

d2ξ
(

δu+i�
iμ
0−β+

μ + δu−i�
iμ
0+β−

μ

)

, (90)
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and are calculated using (A.15) and (18). Using the fact that
2κ�∓i j is the inverse of �

i j
±, the equation (89) can be rewrit-

ten as

u∓i = −2�±i j
(

�V (�Ui , ya)
)

[

κ�
ja
∓
(

�V (�Ui , ya)
)

×∂∓ya + ∂∓z j ∓ 2κ�
jμ
0∓β±

μ

(

V (Ui , ya)
)

]

. (91)

Substituting (91) into the gauge fixed action (84), using
(A.25) we obtain

S[zi , ya]
= κ2

2

∫

d2ξ
[ 2

κ
∂+zi�+i j∂−z j + 2∂+zi�+i j�

jb
− ∂−yb

− 2∂+ya�
ai− �+i j∂−z j + ∂+ya�̃

ab− ∂−yb
]

, (92)

which with the help of (A.29) becomes

S[zi , ya] = κ2

2

∫

d2ξ
[ 2

κ
∂+zi�+i j∂−z j

−2∂+zi�+ia�̃
ab− ∂−yb + 2∂+ya�̃

ab− �+bj∂−z j

+∂+ya�̃
ab− ∂−yb

]

. (93)

In order to find the argument of the background fields
�V (�Ui , ya), one considers the zeroth order of Eqs. (91)
and obtains

�U (0)
i = −

[

�0+i j + �0−i j

]

�z(0) j

+
[

�0+i j − �0−i j

]

�z̃(0) j

−κ
[

�0+i j�
ja
0− + �0−i j�

ja
0+
]

�y(0)
a

+κ
[

�0+i j�
ja
0− − �0−i j�

ja
0+
]

�ỹ(0)
a , (94)

where the double variables are defined in analogy with (40).
Substituting (94) into (18), we obtain

�V i (�Ui , ya) = �zi , (95)

and

�V a(�Ui , ya) = −κ
[

�̃ab
0+�0−bi + �̃ab

0−�0+bi

]

�z(0)i

−κ
[

�̃ab
0+�0−bi − �̃ab

0−�0+bi

]

�z̃(0)i

−κ

2

[

�̃ab
0+ + �̃ab

0−
]

�y(0)
b

−κ

2

[

�̃ab
0+ − �̃ab

0−
]

�ỹ(0)
b , (96)

which is exactly (39) with zi = xi . So, we can conclude that
the action (93) is equal to the T-dual action (36).

Comparing the solutions for the gauge fields (86) and (91),
we obtain the T-dual transformation law

∂∓yi ∼= −2�±i j
(

�zi ,�V a(�Ui (z
i , ya), ya)

)

×
[

κ�
ja
∓
(

�zi ,�V a(�Ui (z
i , ya), ya)

)

∂∓ya + ∂∓z j

∓2κ�
jμ
0∓β±

μ

(

zi , V a(Ui (z
i , ya), ya)

)

]

. (97)

These transformations are inverse to (80), so that T i ◦ Ti =
1. Successively applying (97) and (61), using (A.29) and
(A.25), we obtain the i th component of the inverse law of
the total T-dualization (21). Its ath component is (61), so we
confirm that Ta ◦ Ti = T̃ .

7 Group of the T-dual transformation laws

In this section we will recapitulate the coordinate transfor-
mation laws between the theories considered. In Sect. 3, we
performed the T-dualization procedure along the coordinates
xa

T a : S[xμ] → S[xi , ya], (98)

and obtained the following coordinate transformation law:
(45)

∂∓xa ∼= −2κ�̃ab∓
(

xi ,�V a(xi , ya)
)

×
[

�±bi
(

xi ,�V a(xi , ya)
)

∂∓xi + 1

2
∂∓yb

∓β±
b

(

xi , V a(xi , ya)
)

]

(99)

where V a and β±
a are given by (39) and (34). In the zeroth

oder this law implies

x (0)a ∼= V (0)a(xi , ya). (100)

In Sect. 4, starting from the action S[xi , ya] we performed
the T-dualization procedure along the coordinates ya

Ta : S[xi , ya] → S[xμ], (101)

and obtained the transformation law (61)

∂∓ya ∼= −2�±aμ(x)∂∓xμ ± 2β±
a (x), (102)

which is the law inverse to (99) and in the zeroth order it
implies

y(0)
a

∼= U (0)
a (x). (103)

Multiplying the transformation law (99) from the left side
by �±ca(x) ∼= �±ca

(

xi ,�V a(xi , ya)
)

, using (100), we
obtain the transformation law (102). So, we confirm that
T a ◦ Ta = 1.
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In Sect. 5, starting once again from the action S[xi , ya], we
performed the T-dualization procedure along the undualized
coordinates xi

T i : S[xi , ya] → S[yμ], (104)

and obtained the coordinate transformation law (80)

∂∓xi ∼= −κ�
iμ
∓
(

�V (y)
)

[

∂∓yμ ∓ 2β±
μ

(

V (y)
)

]

, (105)

where Vμ and β±
μ are given by (18) and (72). In the zeroth

order it gives

x (0)i ∼= V (0)i (y). (106)

The two successive T-duality transformations (99) and (105)
give the complete transformation (20), so that T a ◦T i = T .

In Sect. 6, starting from the completely T-dual action S[y],
we performed the T-dualization procedure along the coordi-
nates yi

Ti : S[yμ] → S[xi , ya], (107)

and obtained (97)

∂∓yi ∼= −2�±i j
(

�xi ,�V a(�Ui (x
i , ya), ya)

)

×
[

κ�
ja
∓
(

�xi ,�V a(�Ui (x
i , ya), ya)

)

∂∓ya + ∂∓x j

∓2κ�
jμ
0∓β±

μ

(

xi , V a(Ui (x
i , ya), ya)

)

]

, (108)

with Va , Ui , and β±
μ given by (79), (94), and (72). In the

zeroth order this law implies

y(0)
i

∼= U (0)
i (xi , ya). (109)

Multiplying (108) from the left by

�ki∓
(

�xi ,�V a(y)
) ∼= �ki∓

(

�xi ,�V a(�Ui (x
i , ya), ya)

)

,

using (106), we obtain the transformation law (105), so that
T i ◦ Ti = 1. Successively applying (108) and (102), using
(A.29) and (A.25), we obtain the i th component of the inverse
law of the complete T-dualization (21). Its ath component is
(102), so we confirm that Ta ◦ Ti = T̃ .

We can conclude that the elements 1, T a and Ta , with
d = 1, . . . , D, form an Abelian group. The element T a is
the inverse of the element Ta .

8 Dilaton field in the weakly curved background

The T-duality transformation of the dilaton field in the weakly
curved background was considered in Ref. [26]. For com-
pleteness and further use, we give here a brief recapitulation
of some basic steps of the treatment.

It is well known that a dilaton transformation has a quan-
tum origin. So, let us start with the path integral for the gauge
fixed action

Z =
∫

dv
μ
+dv

μ
−dyμe

i Sfix(v±,∂±y), (110)

where

Sfix(v±, ∂±y) = S0 + S1 , (111)

with S1 being the infinitesimal part of the action

S0 = κ

∫

d2ξ [vμ
+�0+μνv

ν− + 1

2
(v

μ
+∂−yμ − v

μ
−∂+yμ)] ,

S1 = κ

∫

d2ξ v
μ
+hμν(V )vν− . (112)

For a constant background (S1 = 0) the path integral is
Gaussian and it equals (det �0+μν)

−1. In our case the back-
ground is coordinate dependent and thus the integral is not
Gaussian. The fact that we work with an infinitesimal param-
eter enables us to show that the final result is formally the
same as in the flat case [26],

Z =
∫

dyμ
1

det(�+μν(V ))
ei

�S(y), (113)

where �S(y) = κ2

2

∫

d2ξ ∂+yμ �
μν
− (V )∂−yν is the complete

T-dual action and �+μν(V ) = Bμν(V ) + 1
2Gμν . Conse-

quently, although for the weakly curved background the func-
tional integration over v± is of the third degree, it produces
formally the same result as in the flat space (where the action
is Gaussian),

•� = � − ln det
√

2�+ab. (114)

Using the expressions for T-dual fields (43) we can find
the relations between the determinants

det(2�±ab) = 1

det(2 •�ab± )
=
√

det Gab

det •Gab

=
√

det Gμν

det •Gμν

, (115)

where because of the relation �±ab = Bab± 1
2Gab we put in

the factor 2 for convenience. The symbol •Gμν denotes met-
ric in the whole space-time after partial T-dualization along
xa directions. With the help of last relation we can show
that the change of space-time measure in the path integral is
correct
√

det Gμν dxidxa → √

det Gμν dxi
1

det(2 �+ab)
dya

= √

det •Gμν dxidya, (116)

when we performed T-dualization T a along xa directions.
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9 Comparison with the existing facts

9.1 T-dualization chain for the background with H flux

In this section we will compare our results with the T-du-
alization chain of Ref. [16]. The coordinates of the D = 3-
dimensional torus will be denoted by x1, x2, x3. Because
of the different notation, the background fields considered in
this paper and those considered in [16], which will be denoted
G and B, are related by

Bμν = −2Bμν, Gμν = Gμν, μ, ν = 1, 2, 3. (117)

Nontrivial components of the background considered in
Ref. [16] are

Gμν = δμν, B12 = Hx3, (118)

which in our notation corresponds to the background fields

Gμν = δμν, B12 = −1

2
Hx3. (119)

Let us first compare the results in the case d = 1, corre-
sponding to the transition

T 1 : torus with H-flux → twisted torus.

To do so, let us perform T-dualization along the direction
x1, T 1 : S[x] → S[y1, x2, x3], for the string moving in the
background (119). The indices take the values a, b ∈ {1} and
i, j ∈ {2, 3}. Because the only nontrivial component of the
Kalb–Ramond field is Bai = − 1

2 Hx3δi2 , the effective fields
are just G̃E

μν = δμν and θ̃ab = 0. So, the T-dual background
fields (44), in the linear order in H , are

•Gi j = δi j ,
•Bi j = 0,

•Gab = δab, •Bab = 0,

•Ga
i = −Hx3δi2,

•Ba
i = 0. (120)

Therefore

•Gμν =
⎛

⎝

1 −Hx3 0
−Hx3 1 0

0 0 1

⎞

⎠ = •Gμν, (121)

and

•Bμν = 0 = •Bμν, (122)

so our result is in agreement with that of Ref. [16].
Now, let us make the comparison in the case d = 2, which

corresponds to the transition

T 1 ◦ T 2 : torus with H-flux → Q-flux non-geometry.

Instead to perform T 2 dualization, from twisted torus to Q-
flux non-geometry as in [16], we will start from the initial
background with H -flux and perform T-dualizations along
x1 and x2, T 1 ◦ T 2 : S[x] → S[y1, y2, x3]. The indices
take the values a, b ∈ {1, 2} and i, j ∈ {3}. Because the
only nontrivial contribution to the Kalb–Ramond field Bab is
B12 = − 1

2 Hx3, the effective background fields are G̃E
ab =

δab, ḠE
i j = δi j , and the only nonzero component of θ̃ab is

θ̃12 = 1
κ
Hx3. The T-dual background fields linear in H are

therefore

•Gi j = δi j ,
•Gab = δab, •Gai = 0, (123)

and

•Bi j = 0, •B12 = 1

2
Hx3, •Ba

i = 0. (124)

Consequently

•Gμν =
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ = •Gμν, (125)

•Bμν = −2 •Bμν =
⎛

⎝

0 −Hx3 0
Hx3 0 0

0 0 0

⎞

⎠ , (126)

so the results of this paper and [16] in this case coincide.

9.2 Non-associativity of R-flux background and breaking
of Jacobi identity

In Refs. [18,19] we obtained T-dual transformation laws con-
necting T-dual coordinates yμ with the initial coordinates
xμ. Here we will reduce our case to the 3-dimensional torus
with H-flux considered in [8]. Then, the full T-dualization
along all coordinates corresponds to the so-called R-flux.
So, we are going to calculate its characteristic features: non-
associativity relation and breaking of Jacobi identity.

We will work in the background of Sect. 9.1 consisting of
euclidean flat metric Gμν and Kalb–Ramond field with one
nontrivial component B12 = − 1

2 Hx3. T-dual transformation
laws for coordinates yμ (μ = 1, 2, 3) are of the form

y′
1

∼= 1

κ
π1 + 1

2
Hx3x ′2, (127)

y′
2

∼= 1

κ
π2 − 1

2
Hx3x ′1, (128)

y′
3

∼= 1

κ
π3, (129)

where π1, π2, π3 are canonically conjugated momenta for
coordinates x1, x2, x3, respectively. The initial space is a
geometric one, so, the standard Poisson algebra is satisfied,
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{xμ(σ ), πν(σ̄ )} = δμ
νδ(σ − σ̄ ),

{xμ, xν} = {πμ, πν} = 0. (130)

From (127)–(129) we obtain

{y′
μ(σ ), y′

ν(σ̄ )} = − 1

2κ
Hεμνρx

′ρδ(σ − σ̄ ), (131)

which, after two partial integrations, produces

{yμ(σ ), yν(σ̄ )} = 1

2κ
Hεμνρ

[

xρ(σ ) − xρ(σ̄ )
]

θ(σ − σ̄ ),

(132)

where εμνρ is the 3-dimensional Levi-Civita tensor (ε123 =
1) and the function θ(σ ) is defined as

θ(σ ) ≡
⎧

⎨

⎩

0 if σ = 0
1/2 if 0 < σ < 2π, σ ∈ [0, 2π ].
1 if σ = 2π

(133)

Using the standard Poisson algebra (130) and transformation
laws (127)–(129), after one partial integration, we get

{{yμ(σ1), yν(σ2)}, yρ(σ3)}
= 1

2κ2 Hεμνρ [θ(σ2 − σ1)θ(σ1 − σ3)

+θ(σ1 − σ2)θ(σ2 − σ3)] , (134)

Now we have all ingredients to calculate the non-
associativity relation

{{yμ(σ1), yν(σ2)}, yρ(σ3)} − {yμ(σ1), {yν(σ2), yρ(σ3)}}
= 1

2κ2 Hεμνρ [2θ(σ3 − σ2)θ(σ2 − σ1)

+θ(σ1 − σ3)θ(σ3 − σ2) + θ(σ3 − σ1)θ(σ1 − σ2)]

(135)

and breaking of Jacobi identity

{yμ(σ1), yν(σ2), yρ(σ3)}
≡ {{yμ(σ1), yν(σ2)}, yρ(σ3)}+{{yν(σ2), yρ(σ3)}, yμ(σ1)}

+{{yρ(σ3), yμ(σ1)}, yν(σ2)}
= 1

κ2 Hεμνρ [θ(σ1 − σ2)θ(σ2 − σ3)

+ θ(σ3 − σ1)θ(σ1 − σ2) + θ(σ2 − σ3)θ(σ3 − σ1)] .

(136)

For example, for σ1 = 2π + σ and σ2 = σ3 = σ one has

{yμ(2π + σ), yν(σ ), yρ(σ )} = − 1

κ2 Hεμνρ. (137)

In the approach of this article, the background of the T-
dual theory depends on the non-local variable Vμ, which
incorporates the main features of the non-geometric spaces.

Reducing our procedure to three dimensions and using the
backgrounds of Refs. [8,16,27], we showed that our structure
of arguments of background fields proves the proposal of
Refs. [8,27] that non-associativity and breaking of Jacobi
identity are features of R-flux background.

9.3 Critical surface

Let us generalize the discussion of Ref. [20] where the
critical surface, which separates equivalent sections of back-
ground fields, generalizes the critical radius. Using the dila-
ton field analysis, namely the relation (115), we can conclude
that T-duality maps the theories with a given

det(2�±ab)

into the theories with

1/ det(2�±ab),

so that all different theories are in the region

det(2�±ab) ≤ 0.

The theories which background fields satisfy the condition
det(2�±ab) = 1, are mapped into each other under T-
duality. This is a generalization of the critical radius and can
be consider as a critical surface. So, relation (115) implies√

det Gab =
√

det •Gab, which means that a dual volume is
equal to the initial one. At the critical surface the extended
symmetry should be expected.

Let us, following [20], give an example of the relation
between the original and T-dual background fields. We will
consider the initial background in the 4-dimensional torus
T 4 given by

Gμν = gδμν, Bμν = bi Ei
μν, (138)

where

E1 =

⎡

⎢

⎢

⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤

⎥

⎥

⎦

, E2 =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎦

,

E3 =

⎡

⎢

⎢

⎣

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎤

⎥

⎥

⎦

, (139)

satisfies

Ei E j = −δi j I + εi jk Ek, ε123 = 1. (140)
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The zero modes of the T-dual metric and T-dual Kalb–
Ramond field (17) for the initial fields (138) are

�Gμν = (G−1
E )μν = g

g2 + b2 I (141)

and

�Bμν = κ

2
θμν = −1

2

bi

g2 + b2 Ei , (142)

with b2 = bibi . They have the same form as the initial fields
(138)

�Gμν = �gδμν,
�Bμν = �bi Ei

μν, (143)

with

�g = g

g2 + b2 , �b = − bi

g2 + b2 . (144)

One easily shows

�g2 + �b2 = 1

g2 + b2 . (145)

In spheric coordinates one has

(g, b1, b2, b3) = (r cos θ, r sin θ cos ϕ,

r sin θ sin ϕ cos ϕ1, r sin θ sin ϕ sin ϕ1),

(146)

so g2 + b2 = r2, and using (144) one obtains

(�g, �b1
, �b2

, �b3
)

=
(

1

r
cos θ,−1

r
sin θ cos ϕ,−1

r
sin θ sin ϕ cos ϕ1,

−1

r
sin θ sin ϕ sin ϕ1

)

. (147)

Therefore, T-duality transforms (r, θ, ϕ, ϕ1) to

(�r , �θ, �ϕ, �ϕ1) =
(

1

r
,−θ, ϕ, ϕ1

)

. (148)

From the relation �±G−1�∓ = − 1
4GE we find

det(2�±μν) = g2

�g2 = (g2 + b2)2 = r4 . (149)

Backgrounds corresponding to r = 1 are mapped into them-
selves. The subset of this is the fixed surface with the condi-
tion

det(2�±μν) = r4 = 1 , θ = 0

or g = 1, bi = 0.

10 Conclusion

In this paper, we considered the closed string propagat-
ing in the weakly curved background (6), composed of a
constant metric Gμν and a linearly coordinate dependent
Kalb–Ramond field Bμν , with infinitesimal field strength. We
investigated the application of the generalized T-dualization
procedure on the arbitrary set of coordinates and obtained
the following T-duality diagram:

Let us stress that generalized T-dualization procedure
enables the T-dualization along arbitrary direction, even if
the background fields depend on these directions. The con-
sequence of this procedure is that the arguments of the back-
ground fields, such as �V a , are non-local. They are non-local
by definition, as they are the line integrals of the gauge fields.
Once the explicit form is obtained the non-locality is seen in
a fact that they depend on double coordinates x̃ and ỹ, which
are the line integrals of the τ and σ derivatives of the original
coordinates. To all the theories considered, except the initial
theory, there corresponds the non-geometric, non-local flux.

The generalized T-dualization procedure was first applied
along arbitrary d (d = 1, . . . , D − 1) coordinates xa =
{xμ1 , . . . , xμd }. We obtained the T-dual action S[xi , ya],
given by Eq. (36) with the dual background fields equal to

•�+i j = �+i j ,
•� a

+i = −κ�+ib�̃
ba− ,

•�a
+i = κ�̃ab− �+bi ,

•�ab+ = κ

2
�̃ab− . (150)

The argument of all background fields, [xi , V a(xi , ya)],
depends nonlinearly on coordinates xi , ya through their dou-
bles x̃ i , ỹa [see (39) and (40)]. All actions S[xi , ya] are phys-
ically equivalent, but they are described with coordinates
xi = {xμd+1 , . . . , xμD }, for the untreated directions and dual
coordinates ya = {yμ1 , . . . , yμd }, for the dualized directions.
The case d = D corresponds to the completely T-dual action
with the T-dual fields κ

2 �
μν
−
(

V (y)
)

and the case d = 0 to the
initial action with the background �+μν(x).

Applying the procedure to the T-dual action along dual
directions ya = {yμ1 , . . . , yμd } we obtained the initial
theory, and applying it to the untreated directions xi =
{xμd+1 , . . . , xμD } we obtained the completely T-dual the-
ory. All these derivations confirmed that the set of all T-
dualizations forms an Abelian group. The neutral element
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of the group is the unexecuted T-dualization, while the T-
dualizations along some subset of original directions T a is
inverse to the T-dualizations along the set of the correspond-
ing dual directions Ta .

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: The background field compositions

The background field compositions�±μν of the initial theory
are

�±μν = Bμν ± 1

2
Gμν, (A.1)

whereGμν and Bμν are the initial metric and the initial Kalb–
Ramond field. The background field compositions �

μν
± of the

T-dual theory are

�
μν
± ≡ − 2

κ
(G−1

E �±G−1)μν = θμν ∓ 1

κ
(G−1

E )μν, (A.2)

with GEμν being the effective metric

GEμν ≡ Gμν − 4(BG−1B)μν, (A.3)

and θμν being the parameter of non-commutativity

θμν ≡ − 2

κ
(G−1

E BG−1)μν. (A.4)

These background field compositions satisfy

�±μν�
νρ
∓ = �

ρν
± �∓νμ = 1

2κ
δρ
μ. (A.5)

Let us define the analogs of �
μν
± in the d- and D − d-

dimensional subspaces determined by coordinates xa =
{xμ1 , . . . , xμd } and xi = {xμd+1 , . . . , xμD }, where d =
1, 2, . . . , D − 1. The effective metrics in these subspaces
are defined by

G̃Eab ≡ Gab − 4Bac(G̃
−1)cd Bdb,

ḠEi j ≡ Gi j − 4Bik(Ḡ
−1)kl Bl j , (A.6)

where G̃ab ≡ Gab and Ḡi j ≡ Gi j . Using these we define
the following field compositions:

�̃ab± ≡ − 2

κ
(G̃−1

E )ac�±cd(G̃
−1)db,

�̄
i j
± ≡ − 2

κ
(Ḡ−1

E )ik�±kl(Ḡ
−1)l j , (A.7)

which are in fact the inverses of 2κ�∓ab and 2κ�∓i j

�̃ab± �∓bc = �∓cb�̃
ba± = 1

2κ
δac ,

�̄
i j
±�∓ jk = �∓k j �̄

j i
± = 1

2κ
δik . (A.8)

Analogously as the fields theta �
μν
± defined in the whole

space by (A.2), the theta fields defined in the subspaces can
be separated into antisymmetric and symmetric parts as

�̃ab± = θ̃ab ∓ 1

κ
(G̃−1

E )ab,

�̄
i j
± = θ̄ i j ∓ 1

κ
(Ḡ−1

E )i j , (A.9)

where

θ̃ab ≡ − 2

κ
(G̃−1

E )acBcd(G̃
−1)db,

θ̄ i j ≡ − 2

κ
(Ḡ−1

E )ik Bkl(Ḡ
−1)l j . (A.10)

In the zeroth order the quantities �±μν , �
μν
± , ˜�ab± , and

�̄
i j
± reduce to

�0±μν = bμν ± 1

2
Gμν,

�
μν
0± = − 2

κ
(g−1)μρ�0±ρσ (G−1)σν = θ

μν
0 ∓ 1

κ
(g−1)μν,

˜�ab
0± = − 2

κ
(g̃−1)ac �0±cd(G̃

−1)db = θ̃ab0 ∓ 1

κ
(g̃−1)ab,

�̄
i j
0± = − 2

κ
(ḡ−1)ik �0±kl(Ḡ

−1)l j = θ̄
i j
0 ∓ 1

κ
(ḡ−1)i j ,

(A.11)

where the zeroth order effective metrics are

gμν = Gμν − 4bμρ(G−1)ρσbσν,

g̃ab = Gab − 4bac(G̃
−1)cdbdb,

ḡi j = Gi j − 4bik(Ḡ
−1)klbl j , (A.12)

and the zeroth order non-commutativity parameters are

θ
μν
0 = − 2

κ
(g−1)μρbρσ (G−1)σν,

θ̃ab0 = − 2

κ
(g̃−1)ac bcd(G̃

−1)db

θ̄
i j
0 = − 2

κ
(ḡ−1)ik bkl(Ḡ

−1)l j . (A.13)
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Quantities �0±μν , �
μν
0±, ˜�ab

0±, and �̄
i j
0± satisfy

�0±μν�
νρ
0∓ = �

ρν
0±�0∓νμ = 1

2κ
δρ
μ,

�0±ab�̃
bc
0∓ = �̃cb

0±�0∓ba = 1

2κ
δca,

�0±i j �̄
jk
0∓ = �̄

k j
0±�0∓ j i = 1

2κ
δki . (A.14)

The non-commutativity parameters theta �
μν
± , �̃ab± , and

�̄
i j
± can be expressed as

�
μν
± = �

μν
0± − 2κ�

μρ
0±hρσ �σν

0±,

�̃ab± = �̃ab
0± − 2κ�̃ac

0±hcd�̃db
0±,

�̄
i j
± = �̄

i j
0± − 2κ�̄ik

0±hkl�̄
l j
0±. (A.15)

Appendix A.1: Relations between field compositions

In Sect. 3.2 we introduced the background field composition

�±i j ≡ �±i j − 2κ�±ia�̃
ab∓ �±bj , (A.16)

and analogously we define

˜�±ab ≡ �±ab − 2κ�±ai �̄
i j
∓�± jb. (A.17)

Here we will show that these quantities are the inverses of
the ordinary non-commutativity parameters theta, projected
to the i- and a-subspaces [see (A.22)].

Let us express the tensors �±μν and �
μν
± , which satisfy

(A.5), in a block-wise form as

�±μν =
(

�±i j �±ib

�±aj �±ab

)

, �
μν
± =

(

�
i j
± �ib±

�
aj
± �ab±

)

.

(A.18)

We will use the definition of block-wise inversion, which
states that the inverse of the matrix of the form

M =
(

A B
C D

)

(A.19)

equals

M−1

=
(

(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

)

.

(A.20)

Applying (A.20) to the first matrix in (A.18), Eq. (A.5)
implies

2κ�
i j
∓ = (

�±i j − 2κ�±ia�̃
ab∓ �±bj

)−1
,

2κ�ib∓ = −2κ�̄
i j
∓�± ja(�±ab − 2κ�±ak�̄

kl∓�±lb)
−1,

2κ�
aj
∓ = −2κ�̃ab∓ �±bi (�±i j − 2κ�±ic�̃

cd∓ �±d j )
−1,

2κ�ab∓ = (�±ab − 2κ�±ai �̄
i j
∓�± jb)

−1, (A.21)

and we can conclude that (A.16) and (A.17) are the inverses
of 2κ�

i j
∓ and 2κ�ab∓ , respectively. So, we can write

�±i j�
jk
∓ = �

k j
∓ �± j i = 1

2κ
δki ,

˜�±ab�
bc∓ = �cb∓ ˜�±ba = 1

2κ
δca, (A.22)

and

�ib∓ = −2κ�̄
i j
∓�± ja�

ab∓ ,

�
aj
∓ = −2κ�̃ab∓ �±bi�

i j
∓. (A.23)

Applying (A.20) to the second matrix in (A.18), Eq. (A.5)
implies

2κ�∓i j = (�
i j
± − 2κ�ia±˜�ab∓�

bj
± )−1,

2κ�∓ib = −2κ�∓i j�
ja
± (�ab± − 2κ�ak± �∓kl�

lb±)−1,

2κ�∓aj = −2κ˜�ab∓�bi± (�
i j
± − 2κ�ic±˜�∓cd�

d j
± )−1,

2κ�∓ab = (�ab± − 2κ�ai± �∓i j�
jb
± )−1, (A.24)

so using (A.8) we conclude that

�̄
i j
± = �

i j
± − 2κ�ia±˜�ab∓�

bj
± ,

�̃ab± = �ab± − 2κ�ai± �∓i j�
jb
± , (A.25)

and

�∓ib = −2κ�∓i j�
ja
± �∓ab,

�∓aj = −2κ˜�∓ab�
bi±�∓i j . (A.26)

Let us derive some useful relations between these quan-
tities. Equation (A.5), for μ = a, ν = i and μ = i , ν = a,
becomes

�±ab�
bi∓ = −�±aj�

j i
∓ ,

�±i j�
ja
∓ = −�±ib�

ba∓ , (A.27)

while taking μ = a, ν = b and μ = i , ν = j we obtain

�±ac�
cb∓ + �±ai�

ib∓ = 1

2κ
δba ,

�±ia�
aj
∓ + �±ik�

k j
∓ = 1

2κ
δ
j
i . (A.28)

Multiplying Eq. (A.27) from the left with �̃ca∓ and from the
right with �̄∓ik we get the relation

�ci∓�±ik = −�̃ca∓ �±ak, (A.29)

while multiplying Eq. (A.28) from the right with �̄ki∓ and
from the left with �̃±ac, we obtain

�ka∓ ˜�±ac = −�̄ki∓�±ic. (A.30)
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