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T-dualization of a weakly curved background

Lj. Davidović, B. Nikolić and B. Sazdović

Institute of Physics, University of Belgrade, Belgrade, Serbia

Abstract. We consider a string moving in a weakly curved background, composed of a
constant metric and a linearly coordinate dependent Kalb-Ramond field with an infinitesimal
strength. We discuss the T-dualization procedure which we developed for a closed bosonic
string moving in a weakly curved background. The procedure is a generalization of a Buscher
T-dualization procedure and enables the T-dualization of the nonisometry directions. The same
procedure is used to investigate the T-duals of an open bosonic string as well. The generalized
T-dualizations give insight to the connection between the geometrical properties of the T-dual
spaces.

1. Introduction
In string theory there exists a symmetry, T-duality, which allows the physical equivalence of the
string living on the different geometrical structures of the compactified dimensions. The string
living in a space with one dimension compactified on a radius R, has the same physical features
as a string leaving in a space with one dimension compactified on a radius α′

R , where α′ is a Regge
slope parameter. T-duality was first described in the context of toroidal compactification in [1]
(thoroughly explained in [2]), it can be generalized to the arbitrary toroidal compactification
[3], and extended to the non-flat conformal backgrounds [4]. The origin of T-duality is seen in
a possibility that, unlike a point particle, the string can wrap around compactified dimensions.

The first T-dualization procedure, the prescription for obtaining a theory which is T-dual of
a given theory, was defined by Buscher [5]. The procedure was done for a string sigma model,
describing a string moving in a background composed of a metric Gµν , an antisymmetric field
Bµν and a dilaton field Φ. It is required that the metric admits at least one continuous abelian
isometry which leaves the action invariant. The procedure is founded in gauging the isometry by
introducing the gauge fields vµα. In order to preserve the physical content of the original theory,
one requires that the new fields vµα are nonphysical, which is achieved by the requirement that
the gauge fields have a vanishing field strength Fµαβ = ∂αv

µ
β −∂βvµα. This requirement is included

in the theory by adding the Lagrange multiplier term yµF
µ
01 into the Lagrangian. Fixing the

gauge one obtains the gauge fixed Lagrangian which carries the information on both initial and
a T-dual theory. The integration over the Lagrange multipliers yµ, simply recovers the original
theory. The integration over the gauge fields vµα, produces the T -dual theory.

The standard T-dualization procedure is applicable along directions which do not appear as
the background field arguments. The generalized T-dualization procedure which is applicable
along an arbitrary coordinate was done in Refs. [6, 7, 8]. The procedure is founded in the
standard procedure and keeps the main rules of the standard procedure. In order to gauge the
global isometry, one introduces the gauge fields vµα, as usual. The replacement of the derivatives
∂αx

µ with the covariant ones Dαx
µ, does not as before make the whole action invariant. The
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obstacle is the background field Bµν depending on xµ, which is not locally gauge invariant. So, as
a new rule we substitute the argument of the background fields by an invariant argument ∆xµinv,
defined as the line integral of the covariant derivatives of the original argument. As before,
in order to obtain the theory physically equivalent to the original one, we add the Lagrange
multiplier term. Using the local gauge freedom we fix the gauge taking xµ(ξ) = xµ(ξ0). The
obtained gauge fixed action reduces to to the original action for the equations of motion for the
Lagrange multiplier. The T-dual theory is obtained for the equations of motion for the gauge
fields vµα.

The generalized T-dualization procedure was investigated for a string moving in a weakly
curved background composed of a constant metric, a linearly coordinate dependent Kalb-
Ramond field with an infinitesimal filed strength and a constant dilaton field. It was first
applied to all space-time coordinates in Ref. [6], and a T-dual was obtained. In Ref. [8],
the procedure was applied to an arbitrary set of the initial coordinates. Choosing d arbitrary
directions, we denote T a = ◦dn=1T

µn , T i = ◦Dn=d+1T
µn , and T = ◦Dn=1T

µn , where Tµ stands for

a T-dualization along direction xµ and Ta = ◦dn=1Tµn , Ti = ◦Dn=d+1Tµn , T̃ = ◦Dn=1Tµn , where Tµ
stands for the T-dualization along a dual direction yµ. Performing the generalized procedure we
proved the following composition laws:

T i ◦ T a = T , Ti ◦ Ta = T̃ , Ta ◦ T a = 1, (1)

where 1 denotes the identical transformation (T-dualization not performed). We found the
explicit forms of the resulting theories and the corresponding T-dual coordinate transformation
laws. These results complete the T-dualization diagram connecting all the theories T-dual to
the initial theory.

S[xµ] -S[yµ].�
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The initial theory, describing the bosonic string moving in the weakly curved background
is defined on the geometrical space. All its T-dual theories are non-geometric and non-local
because they depend on variable V µ, which is a line integral of the derivatives of the dual
coordinates. To all of these theories there corresponds a flux which is of the same type as the R
flux unlike the non-geometric theories with Q flux, which have a local geometric description.

2. Bosonic string action
Let us consider the action [9, 10] describing the propagation of the bosonic string in a background
composed of a space-time metric Gµν , a Kalb-Ramond field Bµν and a dilaton field Φ

S[x] = κ

∫
Σ
d2ξ
√
−g
[(1

2
gαβGµν(x) +

εαβ√
−g

Bµν(x)
)
∂αx

µ∂βx
ν +

1

4πκ
Φ(x)R(2)

]
. (2)

The integration goes over two-dimensional world-sheet Σ parametrized by ξα (ξ0 = τ, ξ1 = σ),
gαβ is intrinsic world-sheet metric, R(2) corresponding 2-dimensional scalar curvature, xµ(ξ), µ =
0, 1, ..., D − 1 are the coordinates of the D-dimensional space-time, κ = 1

2πα′ and ε01 = −1.
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In order to have a world-sheet conformal invariance on the quantum level, the background
fields have to obey the space-time equations of motion which in the lowest order in slope
parameter α′, have the following form

Rµν −
1

4
BµρσB

ρσ
ν + 2Dµ∂νΦ = 0,

DρB
ρ
µν − 2∂ρΦB

ρ
µν = 0,

4(∂Φ)2 − 4Dµ∂
µΦ +

1

12
BµνρB

µνρ −R+ 4πκ
D − 26

3
= 0 , (3)

where Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the field strength of the field Bµν , and Rµν and Dµ are
Ricci tensor and covariant derivative with respect to space-time metric. We consider the weakly
curved background, defined by

Gµν = const, Bµν(x) = bµν +
1

3
Bµνρx

ρ ≡ bµν + hµν(x), Φ = const. (4)

The Kalb-Ramond field strength Bµνρ is taken to be infinitesimal. All the calculations are done
in the first order in Bµνρ. In this approximation the weakly curved background is the solution
of the space-time equations of motion (3).

Introducing the light-cone coordinates

ξ± =
1

2
(τ ± σ)

and their derivatives ∂± = ∂τ ± ∂σ, taking a conformal gauge gαβ = e2F ηαβ, the action (2) can
be written as

S[x] = κ

∫
Σ
d2ξ ∂+x

µΠ+µν(x)∂−x
ν , (5)

where

Π±µν(x) = Bµν(x)± 1

2
Gµν(x). (6)

3. The Generalized Buscher T-dualization procedure
The standard T-dualization procedure, enables one to find a T-dual of a given theory, applying
the procedure to the coordinate directions which do not appear as the background field
arguments. The generalized T-dualization procedure does not have this limitation. Both
procedures are grounded in a localization of a global coordinate shift symmetry δxµ = λµ =
const. The first rule of the procedures is the introduction of the gauge fields vµα and the
substitution of the ordinary derivatives with the covariant derivatives, defined by

∂αx
µ → Dαx

µ = ∂αx
µ + vµα. (7)

If one imposes the following transformation law for the gauge fields

δvµα = −∂αλµ, (λµ = λµ(τ, σ)) (8)

one obtains δDαx
µ = 0. In the case when the background does not depend on the coordinates,

along which the T-dualization is performed, the first step is sufficient to obtain the gauge
invariant action. However if the background depends on all the coordinates, an additional
rule must be introduced. The new rule reads: Substitute the background field argument (the
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coordinate xµ), by the invariant argument (invariant coordinate), defined as a line integral of
the covariant derivatives of the original coordinate

∆xµinv ≡
∫
P
dξαDαx

µ = xµ − xµ(ξ0) + ∆V µ, ∆V µ ≡
∫
P
dξαvµα. (9)

The invariant coordinate is by definition nonlocal. The consequence of this will be a nonlocal
T-dual theory, defined on the doubled geometrical space composed of the dual coordinate yµ
and its double ỹµ.

The common rule of the procedures is the addition of the Lagrange multiplier term which
makes the introduced gauge fields nonphysical, by requiring that there field strength

Fµαβ ≡ ∂αv
µ
β − ∂βv

µ
α (10)

must be zero. This enables the physical equivalence of the theories. Following these rules we
built the gauge invariant action.

The main object and the main crossway of the procedure are the gauge fixed action and their
equations of motion, because for the equation of motion obtained varying the action over the
Lagrange multipliers, one returns to the initial action. On the other hand for the equation of
motion obtained varying the gauge fixed action over the gauge fields one obtains the T-dual
theory. Comparing the solutions for the gauge fields in these two directions, one obtains the
T-dual coordinate transformation laws. These laws are used in investigation of the relations
between the non-commutativity characteristics of the spaces connected by T-duality.

The generalized procedure, can be generalized once more in order to allow the T-dualization
of the backgrounds which do not have a global symmetry. The generalization was made in Ref.
[7] for a bosonic string moving in a weakly curved background of the second order, which consists
of the coordinate dependent metric and Kalb-Ramond field. One postulates the auxiliary action
which inherits two important features of the gauge fixed action. It reduces to the initial theory for
the equations of motion for the Lagrange multipliers and to the T-dual action for the equations
of motion for the auxiliary fields.

3.1. Complete T-dualization
If one applies the T-dualization procedure to all coordinates, one obtains a following gauge
invariant action

Sinv = κ

∫
d2ξ
[
D+x

µΠ+µν(∆xinv)D−x
ν +

1

2
(vµ+∂−yµ − v

µ
−∂+yµ)

]
, (11)

which is physically equivalent to the initial action. Fixing the gauge by xµ(ξ) = xµ(ξ0), one
obtains the gauge fixed action

Sfix[y, v±] = κ

∫
d2ξ
[
vµ+Π+µν(∆V )vν− +

1

2
(vµ+∂−yµ − v

µ
−∂+yµ)

]
. (12)

In order to find a T-dual action one has to integrate out the gauge fields from (12).
The equations of motion with respect to the gauge fields vµ± are

Π∓µν(∆V )vν± +
1

2
∂±yµ = ∓β∓µ (V ), (13)

with the right hand side coming from the variation of the background fields argument, with
β±µ (x) = ∓1

2hµν [x]∂∓x
ν . The equation of motion can be rewritten as

vµ±(y) = −κΘµν
± [∆V (y)]

[
∂±yν ± 2β∓ν [V (y)]

]
, (14)
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where

Θµν
± [∆V ] = −2

κ
(G−1

E Π±G
−1)µν = θµν [∆V ]∓ 1

κ
(G−1

E )µν [∆V ], (15)

and GEµν ≡ [G−4BG−1B]µν , θµν ≡ − 2
κ(G−1

E BG−1)µν are the open string background fields: the
effective metric and the non-commutativity parameter respectively. They are defined in analogy
with the flat space-time open string background fields introduced in [11]. Tensors Π∓µν and
Θµν
± are connected by Θµν

± Π∓νρ = 1
2κδ

µ
ρ . Substituting (14) into the action (12), we obtain T-dual

action
?S[y] ≡ Sfix[y] =

κ2

2

∫
d2ξ ∂+yµΘµν

− [∆V (0)(y)]∂−yν , (16)

where we neglected the term β−µ β
+
ν as the infinitesimal of the second order, and the argument

is given by
∆V (0)µ(y) = −κθµν0 ∆y(0)

ν + (g−1)µν∆ỹ(0)
ν . (17)

Comparing the initial action (5) with the T-dual action (16), we see that they are equal under
following transformations ∂±x

µ → ∂±yµ and Π+µν [x]→ κ
2 Θµν
− [∆V (0)], which implies

Gµν → ?Gµν = (G−1
E )µν [∆V (0)],

Bµν [x] → ?Bµν =
κ

2
θµν [∆V (0)], (18)

where (G−1
E )µν and θµν are introduced in (15).

The initial background consisted of a constant metric and a linearly coordinate dependent
Kalb-Ramond field with an infinitesimal field strength. The T-dual background consists of
coordinate dependent metric and Kalb-Ramond field, with the argument ∆V µ, which is the
linear combination of yµ and its double ỹµ. Note that the variable V µ and consequently T-dual
action is not defined on the geometrical space (defined by the coordinate yµ) but on the so called
doubled target space [12] composed of both yµ and ỹµ.

3.2. Partial T-dualization
If one choses only a subset of the initial coordinates, say d coordinates xa, and performs T-
dualization procedure along these coordinates, one obtains the following gauge invariant action

Sinv[x
µ, xainv, ya] = κ

∫
d2ξ
[
∂+x

iΠ+ij(x
i,∆xainv)∂−x

j

+ ∂+x
iΠ+ia(x

i,∆xainv)D−x
a +D+x

aΠ+ai(x
i,∆xainv)∂−x

i

+ D+x
aΠ+ab(x

i,∆xainv)D−x
b +

1

2
(va+∂−ya − va−∂+ya)

]
.

(19)

This action is obtained localizing the global shift symmetry only for the coordinates xa, by
introducing the gauge fields vaα. The ordinary derivatives ∂αx

a were substituted by the covariant
derivatives Dαx

a = ∂αx
a+vaα. The covariant derivatives are invariant under the standard gauge

transformations δvaα = −∂αλa. The coordinates xa in the argument of the background fields were
substituted by their invariant extension, defined by ∆xainv ≡

∫
P dξ

αDαx
a = xa− xa(ξ0) + ∆V a,

where ∆V a ≡
∫
P dξ

αvaα. The physical equivalence is preserved by adding the Lagrange multiplier
term (the last term in the action). Fixing the gauge by xa(ξ) = xa(ξ0) one obtains the gauge

5
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fixed action

Sfix[xi, va±, ya] = κ

∫
d2ξ
[
∂+x

iΠ+ij(x
i,∆V a)∂−x

j

+ ∂+x
iΠ+ia(x

i,∆V a)va− + va+Π+ai(x
i,∆V a)∂−x

i

+ va+Π+ab(x
i,∆V a)vb− +

1

2
(va+∂−ya − va−∂+ya)

]
. (20)

This action reduces to the initial one for the equations of motion obtained varying over the
Lagrange multipliers. The T-dual action is obtained for the equations of motion for the gauge
fields. It reads

S[xi, ya] = κ

∫
d2ξ

[
∂+x

iΠ+ij(x
i,∆V a(xi, ya))∂−x

j

−κ ∂+x
iΠ+ia(x

i,∆V a(xi, ya))Θ̃
ab
− (xi,∆V a(xi, ya))∂−yb

+κ ∂+yaΘ̃
ab
− (xi,∆V a(xi, ya))Π+bi(x

i,∆V a(xi, ya))∂−x
i

+
κ

2
∂+yaΘ̃

ab
− (xi,∆V a(xi, ya))∂−yb

]
. (21)

The T-dual background fields compositions are the inverses of the already known background
compositions, divided into two coordinate subspaces, the subspace formed by the coordinates
we T-dualize and the subspace formed by the rest of the coordinates. The background field

compositions Π±ij and Θ̃ab
± are defined as the inverses of the background field compositions Θjk

∓
and Π∓bc, which are the parts of Θµν

∓ and Π∓µν in an appropriate subspace

Π±ijΘ
jk
∓ = Θkj

∓Π±ji =
1

2κ
δki ,

Θ̃ab
±Π∓bc = Π∓cbΘ̃

ba
± =

1

2κ
δac . (22)

It can be shown that
Π+ij ≡ Π+ij − 2κΠ+iaΘ̃

ab
−Π+bj . (23)

The argument of the background fields is

∆V (0)a(xi, ya) = −κ
[
Θ̃ab

0+Π0−bi + Θ̃ab
0−Π0+bi

]
∆x(0)i

− κ
[
Θ̃ab

0+Π0−bi − Θ̃ab
0−Π0+bi

]
∆x̃(0)i

− κ

2

[
Θ̃ab

0+ + Θ̃ab
0−

]
∆y

(0)
b −

κ

2

[
Θ̃ab

0+ − Θ̃ab
0−

]
∆ỹ

(0)
b . (24)

Calculating the symmetric and antisymmetric part of the background fields we obtain a T-dual
metric and a T-dual Kalb-Ramond field

•Gij = Gij = Gij −Gia(G̃−1
E )abGbj

−2κ
(
Biaθ̃

abGbj +Giaθ̃
abBbj

)
− 4Bia(G̃

−1
E )abBbj ,

•Bij = Bij = Bij −
κ

2
Giaθ̃

abGbj −Bia(G̃−1
E )abGbj

−Gia(G̃−1
E )abBbj − 2κBiaθ̃

abBbj ,
•Gab = (G̃−1

E )ab,

•Bab =
κ

2
θ̃ab,

•Gai = κθ̃abGbi + 2(G̃−1
E )abBbi,

•Ba
i = κθ̃abBbi +

1

2
(G̃−1

E )abGbi. (25)
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As the constituents of the T-dual background field there appear the effective metric in the
subspace a, defined by G̃Eab ≡ Gab − 4Bac(G̃

−1)cdBdb, the non-commutativity parameter in
the same subspace θ̃ab ≡ − 2

κ(G̃−1
E )acBcd(G̃

−1)db, which combined give the new theta function

Θ̃ab
± = θ̃ab ∓ 1

κ(G̃−1
E )ab.

4. Open string T-dualization
In paper [13] we investigated a T-duality of an open string moving in a weakly curved
background. The open string moving in a weakly curved background was a subject of
investigation in our papers [14, 15, 16]. Solving the boundary conditions at the open string
end-points, one obtains the effective closed string described by the effective closed string theory
Seff , defined on the doubled space (qµ, q̃µ). As the effective theory is closed string theory, one
can try to apply the generalized T-dualization procedure to this theory. The effective theory
is defined on the doubled theory, just as the T-duals of the closed string theory moving in the
weakly curved background. So, the application in this case resembles the application of the
T-dualization procedure to the T-dual theories.

The effective theory of the open string moving in the weakly curved background, obtained
for the solution of the boundary conditions equals

Seff = κ

∫
dτ

∫ π

−π
dσ ∂+q

µ Πeff
+µν(q, 2bq̃) ∂−q

ν , (26)

where

Πeff
±µν(q, 2bq̃) ≡ Beff

µν (2bq̃)± 1

2
Geffµν (q). (27)

The effective variable is qµ(σ), an even part of the initial coordinate. The effective metric and
the Kalb-Ramond field are explicitly given by

Geffµν (q) = GEµν(q) := (G− 4B2(q))µν ,

Beff
µν (2bq̃) = −κ

2

(
gE∆θ(2bq̃)gE

)
µν
, (28)

where ∆θµν is the infinitesimal part of the non-commutativity parameter θµν =

− 2
κ

[
G−1
E BG−1

]µν
= θµν0 − 2

κ

[
g−1
E (h + 4bhb)g−1

E

]µν
. In paper [13] we applied the generalized

Buscher T-dualization procedure, to the effective theory along all effective directions qµ.
Following the procedure we find the gauge fixed action

Sfix = κ

∫
d2ξ
[
vµ+Πeff

+µν(∆V, 2b∆Ṽ )vν− +
1

2
(vµ+∂−%µ − v

µ
−∂+%µ)

]
, (29)

obtained from the effective action (26), by substituting the light-cone derivatives ∂±q
µ with

the covariant derivatives D±q
µ = ∂±q

µ + vµ±, where vµ± are the gauge fields, which transform as
δvµ± = −∂±λµ. The argument of the background fields is substituted with an invariant argument,
which is obtained substituting the effective coordinate qµ and its double q̃µ with an invariant
effective coordinate and its double, defined by the following line integrals of the gauge fields
∆V µ =

∫
P (dξ+vµ+ + dξ−vµ−), and ∆Ṽ µ =

∫
P (dξ+vµ+ − dξ−v

µ
−). The physical equivalence was

achieved by adding the Lagrange multiplier term 1
2(vµ+∂−%µ − v

µ
−∂+%µ) and the gauge is fixed

with qµ(ξ) = qµ(ξ0).
The T-dual theory was obtained for the equation of motion for the gauge fields. The T-dual

action reads
?S = κ

∫
d2ξ∂+%µ

κ

2
(Θeff
− )µν(∆V (%), 2b∆Ṽ (%))∂−%ν , (30)
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where

(Θeff
± )µν(x, y) ≡ Θµν

± (Geff (x), Beff (y)) = θµνeff (y)∓ 1

κ
(G−1

E )µν(x), (31)

θµνeff := θµν(Geff (x), Beff (y)) = − 2
κ

(
G−1
E (Geff (x), Beff (y))Beff (y)G−1

eff (x)
)µν

and the

argument is

V µ
0 (%) = (g−1

E )µν(Geff , Beff )%̃ν = (g−1
E )µν %̃ν ,

Ṽ µ
0 (%) = (g−1

E )µν(Geff , Beff )%ν = (g−1
E )µν%ν . (32)

The T-dual metric ?Gµν which depends on the first variable ∆V µ and the T-dual Kalb-Ramond
field ?Bµν , which depends on the second variable 2bµν∆Ṽ ν are

?Gµν = (G−1
E )µν(∆V ),

?Bµν =
κ

2
(θeff )µν(2b∆Ṽ ) =

κ

2
∆θµν(2b∆Ṽ ). (33)

We see, that the effective metric has transformed to its inverse and that the Kalb-Ramond field
has transformed to the infinitesimal part of the non-commutativity parameter.

Finally, we searched for the open string theory S̃ such that its effective theory is ?Seff exactly.
We found

S̃[y] = κ

∫
Σ
d2ξ ∂+yµΠ̃µν

+ (y)∂−yν , (34)

with

G̃ = −(CT )−1GC−1,

B̃(y) = ±(CT )−1(b− h(C−1y))C−1, (35)

where C makes a connection between the variables of the effective theory of S̃ and the T-dual
theory (30)

qµ(y) = Cµν(g−1
E )νρ%̃ρ ,

q̄µ(y) = ∓Cµν2(G−1bg−1
E )νρ%ρ. (36)

In the closed string moving in the weakly curved background case, the T-duality transforms
the geometrical background into a doubled non-geometrical background. It transforms a
constant metric to a coordinate dependent effective metric inverse, while the linearly coordinate
dependent Kalb-Ramond field is transformed into a coordinate dependent non-commutativity
parameter. In the open string case, the T-dual theory remains geometric. T-duality transforms
the constant metric of the weakly curved background to a constant T-dual metric, while the
coordinate dependent Kalb-Ramond field transforms again to the coordinate dependent field.

In paper [17] a generalization of the standard analysis of the open bosonic string moving in
a flat background is addressed. The T-dualization was performed in two ways, first in terms
of non-constant vector fields in which case the Buscher T-dualization procedure can not be
applied and second in terms of the field strengths of the gauge fields. The role of the gauge
fields, which live on the string boundary, is to restore the symmetries of the closed string: the
local gauge symmetry of the Kalb-Ramond field and the general coordinate transformations, at
the string end-points. The investigation lead to a discovery of the geometrical features of the
non-geometry.
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Conclusion
The generalized T-dualization procedure, enabled T-dualization over the non isometry
directions. It gives the new insights into a connection between the spaces connected by T-duality.
It enabled further investigations of the closed string non-commutativity [18]. Comparing the
solutions for the gauge fields which transform the gauge fixed actions into the initial or the T-
dual actions, one obtains the T-dual coordinate transformation laws. Using these laws one can
find how does for example a standard Poisson bracket transform. It is obtained that the original
theory which is commutative is equivalent to the non-commutative T-dual theory, whose Poisson
brackets are proportional to the background fluxes times winding and momentum numbers. The
obtained results add novelty to the form and the origin of different non-commutative structures.
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