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ABSTRACT

We consider the closed bosonic string moving in the weakly curved background.
Using T-duality transformation laws we calculate the Poisson brackets of the co-
ordinates in the T-dual space assuming that initial theory is geometric one, which
means that standard Poisson algebra is obeyed. The result is that the commutative
initial theory is equivalent to the non-commutative T-dual theory. All noncommu-
tativity parameters are infinitesimal and proportional to the B, ,, field strength
of Kalb-Ramond field B,,,. In addition we find the algebra of the T-dual wind-
ing numbers and momenta in terms of the winding numbers and momenta of the
initial theory.

1. Introduction

In order to obtain noncommutativity in the open string case it is enough
to consider the open string in the presence of the constant gravitational
G and Kalb-Ramond field By, and use the boundary conditions [1, 2].
Treating boundary conditions as canonical constraints and solving them,
one gets the initial coordinates expressed in terms of the 2 even effective
coordinates and momenta, where €2 is world-sheet parity transformation
Q : 0 — —o. Because effective variables have nonzero Poisson bracket (PB),
the PB between initial coordinates is also nonzero. The noncommutativity
parameter is proportional to the Kalb-Ramond field B, .

There is one interesting thing which we noted in tﬁe open string case.
The effective metric and the noncommutativity parameter are (up to some
constants) the backgroud fields of the T-dual theory. As we know T-dual
theory is physically equivalent to the initial one in the sense they have the
same degrees of freedom - one at the scale R and the T-dual one at the scale
1/R. The mathematical realization of the T-duality goes through Buscher
procedure [3]. As a result of the procedure we get the relation between
initial and T-dual variables which we call transformation laws.
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The closed strings do not have endpoints, so in the constant background
there are no boundary conditions. To obtain noncommutativity in the
closed string case we have to use T-duality as a helping tool. But, in the
constant background case, T-duality relates o-derivatives of the coordinates
of one theory with the momenta of its T-dual one. Assuming that momenta
of the initial theory commute (geometric theory) it follows that the T-dual
coordinates commute as well. Consequently, in the constant background
case there is no closed string non-commutativity.

It is obvious that T-duality is just one part of the solution in order to get
the closed string noncommutativity. The second part is coordinate depen-
dent background obeying the space-time field equations [4, 5]. Considering
the closed string in the constant gravitational field G, and Kalb-Ramond
field depending on one coordinate, the closed string non-commutativity was
first observed in the paper [6], and investigated further in [7, 8, 9]. In these
articles 3-torus is considered, where B,,, depends on one coordinate and T-
dualization is performed along two other coordinates (isometry directions)
using standard Buscher procedure [3].

Omne can ask if it is possible to do that in the background where B,,,
depends on all space-time coordinates. The answer is affirmative but in
order to achieve that we have to use the generalized T-duality procedure
presented in details in [10] and to apply it to the weakly curved back-
ground. The weakly curved background used in the present article is de-
fined by constant gravitational G, = const and the linear Kalb-Ramond
field B, = by + %Bwpx” , where the field strength B, is supposed to
be infinitesimal. Such background obeys space-time field equations [4, 5]
in the linear approximation in B,,,.

We perform the generalized T-dualization procedure [10] along all the
coordinates and obtain the T-duality transformation law, 0+, = 0+y,(0+x),
where J4 are world-sheet partial derivatives. Using canonical formalism,
the T-dual coordinates are expressed in terms of the original variables,

Y, = %77# — ﬁg[x], where 7, are canonically conjugated momenta to the

coordinates x*. The infinitesimal expression ﬂg is the correction in com-

parison to the flat background case. Assuming that the coordinates and
momenta of the original theory satisfy standard Poisson algebra (initial
theory is geometric one), we get the coordinate noncommutativity rela-
tions in the T-dual picture. In addition, we obtain the complete algebra of
the T-dual winding numbers and momenta.

2. Generalized T-duality and noncommutativity

We consider the closed bosonic string moving in the D-dimensional space-
time described by the action

Sla] = & /E € 0, ot (Bu,j[x] + ;GW[:E}) 0 2" (1)

where the light-cone coordinates are defined as ¢+ = %(7‘ + o) and the cor-
responding derivatives 0+ = 0, +0,. In order to keep conformal invariance
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on the quantum level, the background fields have to obey the following
one-loop consistency conditions [4, 5]

1
Ru — 4 ByupeB,” =0, D,B’,, =0. (2)

Here B,,,, = 0,B,, + 0,B,, + 0,B,,, is the field strength of the field B,,,,
and R, and ﬁu are Ricci tensor and the covariant derivative with respect
to the space-time metric.

The solution of the equations in the first order in B,,,,, so called the

weakly curved background, [7, 10, 11, 12], is defined by
Guwlr] = const,
1
Bulr] = by +hwlr] =0bu + gBWpacp, buv, Buwp = const. (3)

Here, the field strength B, is infinitesimal.

Applying the generalized T-dualization procedure [10] on the closed
string propagating in the weakly curved background, we obtain the T-dual
action

* K“Q v
Sl =% [ 46 04,0 [AVIgIO_y. @
where
[ 2 2 -1 —1\uv v 1 —1\uv
0L = _E(GE LG )" =o" :F;(GE )
Gew = Gu —4(BG™'B),,, HiW:BWi%GW. (5)

The argument AV is defined nonlocally as
AV = —k85" Ay, + (97 Ay (6)

where
Ay, = /P(de]u +doy,) = yu(&) —yu(&), Ay, = /P(dTy:‘ +dogy,), (7)

and 5
s = G = A O, O = (g 70GT ()

It is obvious from the definitions (7) that these two coordinates are related
by the following expressions, §,, = ¥, ¥,, = U,

The transformation laws connecting initial and T-dual coordinates play
the key role in our considerations. To be more precise, we obtain from T-

dualization procedure the relations between world-sheet derivatives of the
initial and T-dual coordinates

Orat = —kOL [AV] |0y, + 267 [V]], (9)
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where
Bl = 560+ B) = Fghuuloldga”
62[‘7:] = h#”[x]xw7 /Bplt[x] = _huy[x}iy . (10)

Because we use the canonical formalism, we must have these transformation
laws in the canonical form

P

I

1
~ it — wf BV, (1)

Ky, + KBV], (12)

I

Ty
where 7, and *7# are canonically conjugated momenta to the coordinates
x# and y,, respectively. It is shown in Ref. [10] that the T-dual of the

T-dual action is the initial one. If we want to have T-dual coordinates in
terms of the initial ones, we just have to invert the relation (9)

Oxryy = —2Mg,, [Az]0ra” F 26 [z]. (13)

The canonical form of the T-dual transformations is

1
h = L Al (1)
ko mx’“—i—nQG(‘)‘yﬁg[x]. (15)

Our intention is to calculate the PB’s of the T-dual variables y, and
Ju using PB algebra of the initial variables. Consequently, we assume that
initial theory is geometric which means that coordinates z*# and momenta
m, satisfy standard PB algebra

{z#(0), (o)} = 080(0c — ), {azt(0),2"(0)} =0, {mu(o),m(a)}=0.
(16)
In this article we will calculate, besides already mentioned PB algebra of
the T-dual coordinates, also the algebra of the T-dual winding numbers
and momenta. For both purposes, the first step is introducing the quantity

AYu(ao0) = [ dn¥i(m) = V(o) = Yilow), (17)

0

where Y}, = (Y, 9,). The second step is to calculate their PB’s. It is obvious
that key relation which we have to calculate is PB between o derivatives
of Y’s. When we calculate it in three possible cases it turns out that it can
be written in the form

{X,(0),Y,(0)} 2 K, (0)0(0 = 7) + Lyun(0)d' (0 — 7). (18)
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Integrating this relation by parts over ¢ and &, after straightforward cal-
culation, we extract PB we are searching for

{Xu(Tu 0),Y,(1,0)} = — [KW(U) - KW(‘?) + LW(‘?)] 0(c—0a), (19)

where 6(0) is the step function defined as

0 ifto=0
6(c) =< 1/2 if0<o<2m, o€]|0,2n]. (20)
1 ifo =27

This is a general form of the relation. Using transforation laws we calcu-
late PBs in three cases: {y/,(7),45(0)}, {0(0), 7(9)} and {7,(0), 7,7},
and express them in the form of (18). Reading the corresponding values of
K and L and using (19), we get the noncommutativity relations for T-dual
closed string coordinates

Wl0).00(0)} = - By la(0) — 27(2)}6(c — ). (21)
(01,5000} = ~{ Bugli?(0) ~ #(0)] - 2-T5,,[a#(0) — (2]
—i—%gw _ % r%,,27(2)}0(0 - 7). (22)
(), 5000 2= ~{ — - [Bup — 6,0@05, ] #(0) ~ 2°(0)]  (28)
= o (T8, —TE,) + 2 Buuo (@)% [#(0) — #(0)) 0o — ),
where
= %(G’l)’“’ny +2AGIBY 2| (24)

Here the infinitesimal fluxes are defined as
1 4
E E E E\ _ —13\0 R PAY
Tiup = 5 (0Gh, + 0,61 = 0uG, ) = =5 (Buow(G70)% +Buop (G707, )
(25
(26

Lro —1 2
Q"= =57 (™)™ — K067057] Bory.
For 0 = & we obtain that all PB’s vanish, and consequently, coordinates
commute. Also we can consider ¢ = ¢ + 27, which is the same point on
the world-sheet as our first choice ¢ = 4. Taking ¢ = & + 2w, three non-
commutativity relations take the form

~— ~— o

o+ 2m), (o)} = =T By NP (27)
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oo+ 2m), ()} + (3(0), (o +2m)) = — 5 Bu?

+ (3PEW 8Byuab, ) N7, (28)
and

{9u(o +2m),5,(0)} =
2
= [ B,uz/p 69#01@ pg,é’y + 2B/LZ/ Irp + 3 (F,u vA T V,LL)\) b }

K
+ % [3 (FE -k ) P —8B,,\b p} PP, (29)

Bovp V,p1p

where N* = 2L [z#(0 + 27) — #(0)] is winding number of the initial coor-
dinates and

dnmy(n) , (30)

is mean value of the momentum 7,. Note that all three PB’s are propor-
tional to the Kalb-Ramond field strength which means they are infinitesi-
mal.

In addition we can obtain the algebra of the T-dual winding number
and momenta defined as

Ay,(2m,0) =27*N,,, Ag,(27,0) =271*P,, (31)
while we introduced earlier
Azxt(2m,0) =27 N*,  AzZH(2m,0) = 2w PH. (32)

Using (17), (18), transformation laws and above definitions we have

1
{*N *N } - ;prp ) (33)
*N,,*P, i PP — irE NP 34
{ Iz } - uup Ak PHY ) ( )
¢P.*P} = —— (B (Bup — 6940Q” pg5, ) N”
ws vy = o uvp Jua p98v
1 3 4 _
+ T [ lwp Vup) + BWU(G lb)ap] pr
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3. Concluding remarks

In the present article we considered the theory describing the closed bosonic
string moving in the weakly curved background and derived the non-com-
mutativity relations using canonical approach.

We applied generalized T-duality procedure and obtained the transfor-
mation laws connecting the initial and T-dual variables. They, expressed
in the canonical form, have the central role in calculation of the PB’s of the
T-dual coordinates y, and g,. Infinitesimal Kalb-Ramond field strength,
as a part of the function 3, gives the main contribution to the noncommu-
tativity parameters. The result is that we showed the physical equivalence
of the commutative initial theory and noncommutative T-dual one in linear
approximation in the field strength B,,,.

The general structure of the non-commutativity relations is

{Y(0), Yol@)} = {Fp [19(0) = 2°(3)) + Fpup [#(0) — #(3)] 00 — 7
35
where Y, = (yu, 9,) and F,,,, and Fqu are the constant and infinitesimally
small fluxes. At the same points, for ¢ = & all PB’s are zero. In the
important particular case for o = & 4 27 we get

- 1 .
(Yl +2m), Y (0)} = 27 | (Fiwp + 2F,0ab)N + —Fiufpp| o (36)

where N# and p,, are winding numbers and momenta of the original theory.
In addition we calculated the PB algebra of the T-dual winding numbers
and momenta in terms of the initial ones.
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