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Abstract

We consider a linear quantum amplifier consisting of N4 two-level atoms and study the problem of
amplification of N-photon states. The N-photon states are associated with N-quantum states of the
harmonic oscillator. We show that the process of interaction of the electromagnetic field with atoms
can be associated with some transformation of the phase space and functions defined on this phase
space. We consider the Husimi functions @y (g, p) of N-quantum states of the harmonic oscillator,
which are defined on the phase space, investigate transformation of these functions, and find an explicit
form of the density matrix of the amplified N-photon state.

Keywords: quantum amplifier, Husimi function, harmonic oscillator, scaling transform, density matrix,
phase space, evolution equation.

1. Introduction

We consider the process of interaction of a single-mode electromagnetic field with a two-level atomic
medium. We assume that the medium is described by the Jaynes—Cummings model. We are interested
in the dynamics of the electromagnetic field only; thus we assume that the state of the medium in the
process of interaction does not change. In fact, the complete system is separated into two subsystems.
Such separated systems are described by the density matrix [1-3]. The evolution equation satisfying the
density matrix is known. It is solved by replacing the density operator with quasiprobability distributions.

The quasiprobability distribution functions such as Wigner functions [4], Glauber—Sudarshan func-
tions [5,6], and Husimi-Kano functions [7,8] are often used in quantum optics. The Glauber-Sudarshan
P-distribution was employed in [9-11] in order to obtain information on the properties of the field at
the amplifier output. In [12], it was suggested to use the Husimi-Kano @-distribution instead of the
Glauber—Sudarshan P-distribution, the evolution equation for the @-function was obtained, its solution
was found for a particular case, and its properties were studied.

Manuscript submitted by the authors in English on June 24, 2019.
1071-2836/19/4004-0321©2019 Springer Science+Business Media, LLC 321



Journal of Russian Laser Research Volume 40, Number 4, July, 2019

In this paper, we use the original method, which was developed in [13-17] to analyze the solutions
of the equation for the Husimi function. The essence of the method consists in the fact that a certain
transformation of the phase space of the system is related to the dynamical process occurring in it. The
transformations of the phase space generate the transformations of the functions defined on this phase
space. Transformations of functions have different forms, depending on both the nature of the dynamical
process and the type of functions defined on the phase space. In this paper, we consider the Husimi Q-
functions. In [17], we have shown that in the case of the complete inverse population of two-level atomic
systems forming the amplifier, the transformation of the phase space, corresponding to the amplification
of the field passing through the amplifier reads

(¢;p) = (Mg, Ap), AP <L (1)

It corresponds to scaling of the phase space, and the corresponding transformation of functions is

Q(a,:p) = Q(q,p) = N2Q(Ag, \p). (2)

In [13], we showed that if Q(g, p) is the Husimi function of quantum state, then A\2Q(\q, Ap) is also the
Husimi function of another quantum state, provided that [A|? < 1.

Here, we consider a more general situation, namely, we assume that a part of atoms forming the
amplifier are in the ground state, and the rest of them are in the excited state. In this case, the dynamics
of the process of interaction can also be associated with transformation of the phase space, but this
transformation and the corresponding transformation of functions have a more complex form than (1)
and (2). We describe these transformations and find an explicit form of the density matrix of an amplified
N-photon state.

We treat the states of the harmonic oscillator only, but they can be identified as photons, which is a
standard practice in quantum optics. In this way, the analysis of the amplification process and its results
are also applicable for photons.

2. Quantum Amplifier Structure

We consider a system of N, two-level atoms, N7 of which are excited, and Ny atoms are in the
ground state, with Ny < Nj. These atoms are interacting with the one-mode quantum field, for which
we assume that it is an eigenmode of a free field, and that its frequency is resonant with the atomic
frequency. We assume also that the populations N1 and Ny are kept constant in time due to some pump
and loss mechanism.

Let p be the density operator of the electromagnetic field. The master equation for p reads [1,12]

Op aal s — 241 56 + saat itas — 2asat + sata
5 —yNi(aa'p — 2a'pa + paa') — yNo(a'ap — 2apa’ + pa'a). (3)
Here, a' and @ are the creation and annihilation operators of the electromagnetic field, N7 and Ny are
the populations of the upper and lower levels of the two-level atom, and + is the amplification coefficient.

Using the relation between the density matrix and the Husimi function, we can pass from the operator
equation (3) to an ordinary differential equation for the Husimi function. Using this equation, the
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expression for the Husimi function for the state at the quantum amplifier output was obtained in [12]; it
is

o — 2
Qlaut) = [ #50(5) - exp |- =2, 8
Here

In [17], we considered the case m = 0 corresponding to the situation where all atoms are in the excited
state. In this case, the Husimi function of the state after the amplification is given by a simple expression,

1 o, o
Qour(0t) = 73 Qun(a/G) = (FloulF) - (6)
We found an explicit form of the density matrix of the amplified state in the case where the input state
is a superposition of an arbitrary number of Fock states.

The simplest case takes place if the input state is the pure N-photon state. In this case, at the output
of the amplifier one has the state described by the following density matrix:

R - (1 —A2)J(N + j5)! . .
p?vZZOAQN” N IN + ) (N + j, (7)
‘7:

where A = G~!. The density matrix (7) is diagonal. Its first N diagonal elements with labels 0,1,..., N—1
are equal to zero, and the remaining diagonal elements are

(1—X*)I(N +j)!)\2N+2

N
Fiej = jIN!

j=0,1,... (8)

The values (8) form a negative binomial distribution, and the elements of this distribution are given
by [19]

p+qgq=1 k=0,1,2,... (9)

i = mp (1—P)k7

f(k,r,p)_<7"+k—1> r e (k=11

They are defined by two parameters r and p, and the value k is the element label in the distribution. In
our case, r = N + 1, k = j, and p = A\?, i.e., we have

FY=fU,N+1,0%). (10)

The density matrix (7) of the amplified N-photon state was found in [17]. In this paper, we consider
the case where the population levels N and Ny (N7 > Np) can take arbitrary values. As an input state,
we take the N-photon state and find the density matrix of the corresponding amplified state. We use
formula (7) in our subsequent calculations. In order to distinguish the density matrices of amplified
states obtained by an amplifier with Ny = 0 from the density matrices of amplified states obtained by
an amplifier with arbitrary Ny and N7, we denote the former by p, and the latter by Ap:
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3. The Density Matrix of Amplified State

In order to find the Husimi function @(a) of the amplified state, obtained due to passing trough a
linear quantum amplifier with arbitrary values of populations N7 and Ny (Ng < Nj), one should calculate
the integral (4). The function Q(3) is the Husimi function of the input state. For the input state, we
take the quantum state of the harmonic oscillator |N); its Husimi function has the following form:

_iae 1812
Qn(B) = (BIN)(N|B) =e N (11)
Substituting the above Husimi function into the integral (4) one obtains
~ 1 _18|2 ‘O& - BG|2
A — 2 181% | 312N — LU
Q) =y [ e Y e |22 2CE), (12)
which after integration becomes
~ 1 mN la|2G? |2
A
) = N1 @) tm+ )Y N( m(m+G2)>eXp< m+ G2 (13)
Here Ly(x) is the Laguerre polynomial
N
N\ zF
Ly(z) :N!Z(_l)k<k>k!' (14)
k=0

In [17], we developed a method that allows one to derive the density matrix from the Husimi function of

—~A
the form similar to (13). Applying this method, we obtain the density matrix py of the amplified |N)
state; it reads

A mN > X /N \/k+N-1
W= e () ()

x(m(Gz))N_’(l_ ! )k|k+N—l><k+n—l|, (15)

m+ G2 m + G2

where \72 = m + G*.
When m = 0, the summation over [ reduces to only one term (I = 0), so that the density matrix
becomes

~X 1 — (k+N 1 \k

1 > (n+k)! 1\*
- 7G2(N+1)Z o (1—@) Ik + N){(k + N|. (16)

Now we consider some special cases. Let the input state at the entrance of the amplifier be the
vacuum state |0). The Husimi function of |0) has the form

Qo(a) = e1oF, (17)
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Substituting this expression into (12), we obtain the expression for the Husimi function of the amplified

state |0)out,
1 |af?
— . 18
m+G2eXp< m+G2> (18)

We see that expression (18) coincides with the expression for the Husimi function of the state |0)out
obtained in [17] assuming A~2 = m + G2. Therefore,

@ (o) =

A
= /- (19)

Let now the input state be |1). In this case, the state |1)oy appearing at the amplifier output has
the following density matrix:

Po

~x om 2/ (k+1)G? 1 \"
A W eIE kzzo(mmm)) <1_m—|—G2> o+ 1)k 41
0o k
e |2 (i) ”W’]- (20)
k=0

Comparing expression (20) with the density matrix of the amplified |N) state (7), we see that

A

G2
1 (21)

+m—|—G2p

A mooo\
P1 _m+G2p0

In the general case, one has

N N—-I o
—~ 2 N~ NIN2N+2 7 G2)\2 9 (N =1+ k)!
- 1A TN kYN~ +k
PN " l;u(N—Z)! m kzzo( A N = RN 4

N N—I
N! G?
N\y2N A\
= mMANY (T . 22
i Z (N = 1)! (m) PN (22)

We see that the density matrix (22) of the state, which is obtained from the N-photon state |N), after
passing through the amplifier with arbitrary values of the population levels N; and Ny, is the sum of
the density matrices ﬁf‘vfl of (N — l)-photon states passed through the amplifier, whose population of
the ground level is Ny = 0, i.e., trough the completely excited medium. Properties of such states were
studied in [17] — they have the form (7). These density matrices are diagonal, with either zeros or values
from the negative binomial distribution on the main diagonal. So in the density matrix pj_;, the first
(N — 1 — 1) numbers on the diagonal are zeros followed by values F]]\,Vﬂ, j=0,1,... given in (16). The
total density matrix (22) is the sum of such matrices multiplied by the coefficients that are elements of
the binomial distribution (1 + G2/ m)N. Thus, the matrix elements of the density matrix (22) have the
form of sums of the products of the elements of the binomial distribution and the elements of the negative
binomial distribution.

Let us note that in the case of a completely excited medium, when the population of the ground level
is No = 0, the N-photon amplified state, |N)ou, contains only states with photon number equal to or
greater than N, namely, |[N), [N +1), |[N +2), ... However, if the population of the ground level Ny > 0,
then the output state contains every k-photon state, including the vacuum state (k = 0).
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Now we find the form of the diagonal elements of matrix (22); for this, we present expression (22) as

N

=25 (23)
p=0
where the coefficients SZJ,V are
G\?" NI N
N _ , Ny2N [ Y _ o (N=p)\2N ~2p

= A = A . 24
% =T (m> p(N—pt " “ (p> 24

The density operator ﬁz),‘ given in Eq. (16) can be rewritten as follows:

Z E)ilp+5)(p + 5l (25)
where Fp +; are elements of the negative binomial distribution.
Now we can write the density operator given by (22) as
oo
= > H k) (K], (26)
k=0
Here, the coefficients H ,iv are
HY =Y SVF], k=0,1,....N, HY=) SYFl, k=N+1,N+2,. ... (27)
j=0 j=0

Let us evaluate the trace of the density operator (22)

N N—-I
2 N! G?
Tr(py) = Tr (mNVNE:u(N_Z);(m> P?u)
N-I

N 2N N' G2
A Zl, - Z EY o+ ) (0 + l,

N—-l oo

- NAZNZ (N > (C::) Z p+i
(e £

Thus, by direct calculation we showed that the trace of the operator (22) is equal to unity. Operator (22)
is the diagonal operator and the sum of its diagonal elements Y >, H ,iv = 1. The trace of the operator

~ A
(pn~)? reads
~A\2 o N2
Tr (om0 )] = Yo (EY)P <. (29)
k=0
Therefore, operator (22) is actually the density operator of the quantum state.
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4. Conclusions

The aim of this paper was to investigate the relation between the dynamics of physical processes
and the transformations of the phase space and the functions defined on the phase space. The problem
was addressed by considering a linear quantum amplifier. In this case, we found explicitly interrelations
between the elements describing the dynamics and the transformations in the phase space.

We showed that the state of the quantum amplifier has a significant influence on the state of the
electromagnetic field which passed trough it. In the case where the quantum amplifier is completely
inverted (Ny = 0), the transformation of the phase space and Husimi functions defined on it are deter-
mined by formulas (1) and (2). If both levels of the quantum amplifier, ground and excited, have nonzero
population, the transformation of Husimi functions has a more complex form. It is determined by for-
mula (4) which, in the particular case where the input state is the ground state of harmonic oscillator,
after calculating the integral, takes the form (18). Expression (18) is structurally similar to the Husimi
function transformed by (2), but the fundamental difference between transformations (2) and (4) consists
in the fact that (2) is a local transformation, and (4) is a nonlocal transformation. Thus, the general
structure of transformations of the phase space and the functions specified on the phase space is much
more complex than considered in [17].
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