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Abstract We investigate whether the symmetry transfor-
mations of a bosonic string are connected by T-duality. We
start with a standard closed string theory. We continue with
a modified open string theory, modified to preserve the sym-
metry transformations possessed by the closed string theory.
Because the string theory is conformally invariant world-
sheet field theory, in order to find the transformations which
preserve the physics, one has to demand the isomorphism
between the conformal field theories corresponding to the
initial and the transformed field configurations. We find the
symmetry transformations corresponding to the similarity
transformation of the energy-momentum tensor, and find that
their generators are T-dual. Particularly, we find that the gen-
eral coordinate and local gauge transformations are T-dual,
so we conclude that T-duality in addition to the well-known
exchanges, transforms symmetries of the initial and its T-dual
theory into each other.

1 Introduction

One of the most important notions in theoretical physics is a
symmetry. What is a symmetry of the string theory is not yet
clear mainly because the theory itself is not yet formulated
in a background independent way, which would enlighten its
deeper principles. However, it is believed that the symme-
try does exist, and that it will lead to finding the physically
indistinguishable solutions to the string equations of motion
and choosing the correct vacuum [1,2].

String theory revealed a T-duality, a symmetry which is a
consequence of the string’s extended nature. T-duality con-
nects seemingly different string theories by exchanging, for
example, the characteristics of the strings momentum and
winding [3–6]. So, it should exchange the symmetries of
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string theories as well. If that holds, one can say that sym-
metries of string theories always appear in pairs.

In this paper, we will investigate symmetry of the space-
time in which the bosonic string moves, using a world-sheet
formulation [1]. The formalism differs from the usual, where
the symmetry is a transformation of the space-time fields
which leave the classical action invariant. This concept of a
symmetry does not apply now, because only the world-sheet
values of the space-time fields appear in the string action.
Still, a symmetry should be a change in the space-time fields
which does not change the physics. Thus, suppose one con-
siders a string theory with some chosen space-time field con-
figuration, and a string theory with a modified space-time
configuration. How does one determine if these two descrip-
tions are physically equivalent? The string theory is a con-
formally invariant world-sheet field theory. The physics is
determined by the conformal field theory, corresponding to
the field configuration in question. The transformation on
the fields will be a symmetry if the corresponding conformal
field theories are isomorphic [1,2].

If one is given a conformal field theory, one will obtain a
physically identical conformal field theory by performing a
similarity transformation on the operators of the initial con-
formal field theory

Ô → e−i Γ̂ Ôei Γ̂ .

This transformation does not change the algebraic prop-
erties, so the new theory will be physically the same as the
initial theory. However, the transformation will in general
make changes to the world-sheet energy-momentum tensor.
If these changes can be interpreted as changes in the space-
time fields, then the latter are the symmetry transformations
of the target space.

This idea was introduced in [1,7], where this automor-
phism of the operator algebra was seen as an analog of the
change of variables in a partition function. The problem of
finding symmetries was reduced to the problem of finding the
operator generating the symmetry transformation. The first
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investigations were treating the string massless fields, but the
method was then generalized to treat conformal deformations
of conformal field theory [8,9].

The classical analog of a similarity transformation is
a transformation of a variable of interest by a Poisson
bracket between a generator and a variable. In this paper,
we will apply these transformations to the string sigma
model energy-momentum tensor. We will start by consid-
ering a small modification of the space-time background
Π±μν → Π±μν + δΠ±μν . It will induce the transformation
of the energy-momentum tensor. We will demand that the
new energy-momentum tensor satisfies the Virasoro algebra
as well. This means that the transformed theory is physically
equivalent to the initial theory, or that these field transforma-
tions are the symmetry of space-time theory. In this way we
will find a transformation of space-time fields correspond-
ing to a similarity transformation and the generator of this
symmetry.

We will consider both closed and open string theory. For
the open string we will consider a modified action which dif-
ferent from the closed string action has an additional surface
term which enables the invariance of the complete action to
the general coordinate transformations and the gauge trans-
formations, which are the symmetries of the closed string. For
the open string theory, the boundary conditions can be satis-
fied by choosing either the Neumann or the Dirichlet bound-
ary condition for every coordinate direction. If the choice is
made, the modified action surface term is given in terms of
the corresponding Neumann and the Dirichlet gauge fields.
The closed string symmetries remain the symmetries of the
open string theory taking the appropriate transformation of
these gauge fields.

If one includes T-duality into the consideration, one can
conclude that the general coordinate transformations and the
local gauge transformations are not independent. Comparing
their generators, using the T-dual coordinate transformation
laws, one concludes that they are T-dual. Therefore, the sym-
metries are T-dual and the complete generator of symmetries
is self-dual.

2 The bosonic string essentials

The quantization of the bosonic string theory, describing the
string moving in a background consisting of a space-time
metric Gμν , a Kalb–Ramond field Bμν and a dilaton field
Φ, leads to the conclusion that in order to have a conformal
invariance on the quantum level the energy-momentum ten-
sor components T̂±(ϕ), with ϕ = (Gμν, Bμν,Φ), have to
obey the Virasoro algebras [2,10,11],

[
T̂±(ϕ(σ )), T̂±(ϕ(σ̄ ))

]

= i h̄
[
T̂±(ϕ(σ )) + T̂±(ϕ(σ̄ ))

]
δ′(σ − σ̄ ),

[
T̂±(ϕ(σ )), T̂∓(ϕ(σ̄ ))

]
= 0. (1)

From these conditions follow the space-time equations of
motion which space-time fields Gμν, Bμν,Φ have to obey.
In order to obtain the symmetries of the space-time equations
of motion, one does not need to find their explicit form. It
is sufficient to consider the transformations which do not
change the above relations.

2.1 The conformal gauge

The action which was quantized [12] for a constant dilaton
field reads

S[x] = κ

∫

Σ

d2ξ
√−g

[1

2
gαβGμν(x)

+ εαβ

√−g
Bμν(x)

]
∂αx

μ∂βx
ν, (ε01 = −1), (2)

where the integration goes over a two-dimensional world
sheet Σ with coordinates ξα (ξ0 = τ, ξ1 = σ ). gαβ is the
intrinsic world-sheet metric and xμ(ξ), μ = 0, 1, . . . , D−1
are the coordinates of the D-dimensional space-time and κ =

1
2πα′ .

Taking a conformal gauge gαβ = e2Fηαβ , the action
becomes

S[x] = κ

∫

Σ

d2ξ ∂+xμΠ+μν(x)∂−xν, (3)

with

Π±μν(x) = Bμν(x) ± 1

2
Gμν(x), (4)

given in terms of the light-cone coordinates ξ± = 1
2 (τ ±σ),

∂± = ∂0 ± ∂1.

The momentum corresponding to xμ is

πμ = ∂L
∂ ẋμ

= κGμν(x)ẋ
ν − 2κBμν(x)x

′ν, (5)

and therefore the canonical Hamiltonian for the theory (3)
equals

Hc = 1

4κ
(G−1)μν

[
j+μ j+ν + j−μ j−ν

]
, (6)

where the currents j±μ are given by

j±μ = πμ + 2κΠ±μν(x)x
′ν . (7)

One can rewrite the Hamiltonian in terms of the energy-
momentum tensor components

T± = ∓ 1

4κ
(G−1)μν j±μ j±ν, (8)
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as

HC = T− − T+. (9)

2.2 The gauge invariant approach

Let us in this subsection consider a string theory without a
gauge fixing. If one takes the following parametrization of
the world-sheet metric tensor gαβ [13]:

gαβ = e2F ĝαβ = 1

2
e2F

(−2h−h+ h− + h+
h− + h+ −2

)
, (10)

with h− > h+, the action (2) becomes

S = 2κ

∫

Σ

d2ξ
√

−ĝ ∂̂+xμΠ+μν∂̂−xν, (11)

where Π±μν is defined by (4) and the partial derivative is
given by

∂̂± =
√

2

h− − h+ (∂0 + h∓∂1). (12)

Varying the action over xμ, one obtains the equations of
motion

∇̂±∂̂∓xμ + Γ
μ
∓νρ∂±xν∂∓xρ = 0, (13)

with ∇̂± being the covariant derivative [13], defined by

∇̂±xn = (∂̂± + nω̂±)xn, ω± = ∓
√

2h∓′

h− − h+ , (14)

where xn is a scalar, vector or tensor and n is the sum of its
world-sheet indices, taking 1 for plus and −1 for minus. The
generalized connection is defined by

Γ
μ
±νρ = Γ μ

νρ ± Bμ
νρ, (15)

given in terms of the Christoffel symbol by

Γ μ
νρ = 1

2
(G−1)μσ (∂νGρσ + ∂ρGσν − ∂σGνρ),

and the field strength of the field Bμν ,

Bμ
νρ = (G−1)μσ Bσνρ=(G−1)μσ (∂σ Bνρ+∂νBρσ + ∂ρBσν).

The momentum corresponding to xμ is

πμ = ∂L
∂ ẋμ

= κGμν(x)

h− − h+
(

2ẋν + (h+ + h−)x ′ν)

−2κBμν(x)x
′ν . (16)

One can extract ẋμ from the last equation, to obtain

ẋμ = (G−1)μν

2κ

(
h−(πν + 2κΠ−νρx

′ρ)

−h+(πν + 2κΠ+νρx
′ρ)

)
. (17)

Using the currents (7), the coordinate derivatives over world-
sheet parameters become

ẋμ = (G−1)μν

2κ

(
h− j−ν − h+ j+ν

)
, (18)

x ′μ = (G−1)μν

2κ

(
j+ν − j−ν

)
. (19)

The canonical Hamiltonian density Hc = πμ ẋμ − L is

Hc = −h−T+ − h+T−, (20)

with T± defined in (8). For h± = ∓1, one returns to the
conformal gauge.

3 The symmetries of space-time

In this section, we will search for the symmetries of the space-
time in which the closed and the open strings propagate, and
for their generators. We will investigate the change of the
world-sheet energy-momentum tensor caused by the change
in the space-time fields. We will demand that the transformed
energy-momentum tensor T± + δT± still obeys the classical
analog of the Virasoro algebra (1).

The energy-momentum tensor components T± satisfy two
independent copies of the Virasoro algebra. To find a symme-
try of the equations of motion, one should conclude what kind
of transformation of fields ϕ → ϕ + δϕ, and consequently
of the energy-momentum tensor

T̂±(ϕ + δϕ) = T̂±(ϕ) + δT̂±(ϕ),

δT̂±(ϕ) = GT̂
μν
± δGμν + B T̂

μν
± δBμν + Φ T̂±δΦ, (21)

conserves the Virasoro algebra. One does not need to know
the explicit form of the space-time equations of motion to find
its symmetry transformations. In order to have a conserved
Virasoro algebra, one should find transformations for which
the following conditions are fulfilled:
[
T̂±(ϕ(σ )), δT̂±(ϕ(σ̄ ))

]
+

[
δT̂±(ϕ(σ )), T̂±(ϕ(σ̄ ))

]

= i h̄
[
δT̂±(ϕ(σ )) + δT̂±(ϕ(σ̄ ))

]
δ′(σ − σ̄ ),

[
δT̂±(ϕ(σ )), T̂∓(ϕ(σ̄ ))

]
+

[
T̂±(ϕ(σ )), δT̂∓(ϕ(σ̄ ))

]
= 0.

(22)

It is known [14] that a similarity transformation applied
to T̂±,

T̂± → e−i Γ̂ T̂±ei Γ̂ ,

ensures the physical equivalence of the corresponding the-
ories, and it makes the change in T̂±, which corresponds
to a change in the space-time fields, without changing the
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physics. This kind of change in the space-time fields is there-
fore a symmetry transformation. The similarity transforma-
tion implies that the change of T̂± is just

δT̂±(ϕ) = −i
[
Γ̂ , T̂ (ϕ)

]
. (23)

One can confirm that the last relation solves the conditions
for the Virasoro algebra conservation (22).

In the subsequent sections, we will be interested in find-
ing the change in the space-time fields, which transform
T± in a way which preserves the classical version of the
Virasoro algebra. We will search for a generator ΓΛ (where
Λ is some parameter) such that its Poisson bracket with
energy-momentum components T± produces the variation
δT± = {Γ, T±}, equal to the change of energy-momentum
tensor caused by the variation of fields ϕ → ϕ + δϕ. If such
a generator exists, then the previous variation is a symmetry
transformation of the space-time.

3.1 T-duality of the closed string symmetry generators

Our goal in this and the subsequent sections is to find the
generators of the general symmetry transformations corre-
sponding to the similarity transformation. Thus, let us sup-
pose the background fields undergo a small change in value
Π±μν → Π±μν + δΠ±μν . Let us find the generators of
the symmetries Γ , for this transformation of the background
fields. The currents change by

δ j±μ = 2κδΠ±μν(x)x
′ν, (24)

and therefore

δT± = 1

2κ
δΠ±μν j

μ
± jν∓. (25)

Let us determine the algebra of the currents (7). Using the
standard Poisson brackets between the coordinates and the
momenta

{xμ(σ ), πν(σ̄ )} = δμ
ν δ(σ − σ̄ ), (26)

one obtains

{ j±μ(σ ), j±ν(σ̄ )} =
±2κΓ∓μ,νρ x ′ρ(σ )δ(σ − σ̄ )

±2κGμν(x(σ ))δ′(σ − σ̄ ),

{ j±μ(σ ), j∓ν(σ̄ )} =
±2κΓ∓ρ,μν x

′ρ(σ )δ(σ − σ̄ ), (27)

where the generalized connection is defined by (15). Con-
sequently, the Poisson brackets between T±, defined by (8),

and currents are

{T±(σ ), j±μ(σ̄ )}
= ± 1

2κ
Γ∓ν,μρ j

ν± jρ∓δ(σ − σ̄ ) − j±μ(σ )δ′(σ − σ̄ ),

{T±(σ ), j∓μ(σ̄ )} = ± 1

2κ
Γ∓ρ,νμ jν± jρ∓δ(σ − σ̄ ). (28)

Finally, we obtain the Virasoro algebra

{T±(σ ), T±(σ̄ )} = −
[
T±(σ ) + T±(σ̄ )

]
δ′(σ − σ̄ ),

{T±(σ ), T∓(σ̄ )} = 0, (29)

in agreement with the condition (1).
We will suppose the generator of the symmetries in the

following form:

G = G+ + G−, G± =
∫

dσ Λ
μ
±
(
x(σ )

)
j±μ(σ ). (30)

Using (28), one obtains the Poisson brackets between T± and
the generators,

{T±(σ ),G±(σ̄ )} = ± 1

2κ

[
Γ

μ
∓ρνΛ

ρ
± + ∂νΛ

μ
±
]
j±μ jν∓,

{T±(σ ),G∓(σ̄ )} = ± 1

2κ

[
Γ ν∓μρΛ

ρ
∓ + ∂μΛν∓

]
jμ± j∓ν . (31)

If one defines the generalized covariant derivatives by

D±μΛν = ∂μΛν + Γ ν±ρμΛρ = DμΛν ± Bν
ρμΛρ, (32)

one rewrites (31) as

{T±(σ ),G±(σ̄ )} = ± 1

2κ

(
D∓νΛ

μ
±
)
j±μ jν∓,

{T±(σ ),G∓(σ̄ )} = ± 1

2κ

(
D±μΛν∓

)
jμ± j∓ν . (33)

We know that T± transforms as (25), therefore we search
for a generator G = G+ + G− such that

δT± = {G, T±} = 1

2κ
δΠ±μν j

μ
± jν∓, (34)

which implies

δΠ±μν = ∓
(
D∓νΛ±μ + D±μΛ∓ν

)
. (35)

Taking

Λ±μ = ξμ ± Λμ, (36)

one obtains

δGμν = −2(Dμξν + Dνξμ),

δBμν = DμΛν − DνΛμ − 2B ρ
μν ξρ. (37)
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Using the currents (7) and the gauge parameter (36), we
rewrite the generator G as

G =
∫

dσ
[
2ξμπμ + 2κ(2ξμBμν + ΛμGμν)x

′ν]. (38)

To simplify the last expression, one can define another gauge
parameter

Λ̃ν = 2ξμBμν + ΛμGμν = Λν − 2Bνμξμ, (39)

so that

G = 2
∫

dσ
[
ξμπμ + Λ̃μκx ′μ]

. (40)

In terms of the new parameter the Kalb–Ramond field
transforms as

δBμν = DμΛ̃ν − DνΛ̃μ

+2
[
Dμ

(
Bνρξρ

) − Dν

(
Bμρξρ

) − ξρBρμν

]
, (41)

and the generator (40) is rewritten as

G = Gξ + GΛ̃. (42)

Therefore, the closed string described by (11) is invariant
under the general coordinate transformations

δξGμν = −2(Dμξν + Dνξμ),

δξ Bμν = −2ξρBρμν + 2(∂μbν − ∂νbμ), bμ = Bμνξ
ν,

(43)

with Dμξν = ∂μξν − Γ
ρ
μνξρ, and the local gauge transfor-

mations

δΛGμν = 0,

δΛBμν = ∂μΛν − ∂νΛμ, (44)

where we omit the tilde on Λμ.
If one keeps in mind T-duality, the present form of the

generator offers interesting conclusions. T-duality connects
physically equivalent string sigma models, and the connec-
tion between T-dual string backgrounds and their variables
is simplest in the constant background case. In that case, the
well-known T-duality relation [15,16]

πμ
∼= κx ′μ

stands. So, T-duality interchanges the sigma derivative of
the coordinates with the momenta. The consequence of the
above relation for the generator of symmetry (42) is that its
constituents turn out to be T-dual as well,

Gξ
∼= GΛ̃,

which makes the complete generator G self-dual. Because of
this, the local gauge transformations and the general coordi-
nate transformations are T-dual also. The same relation, how-
ever, does not hold in more complicated backgrounds, when
T-duality is performed along the nonisometry directions or in
backgrounds without the global shift symmetry. These back-
grounds were discussed in [17–19] where the generalized
T-dualization procedure, applicable along an arbitrary space-
time direction was presented and elaborated.

4 The open string and its symmetries

The open string described by the same action as the closed
string is not invariant to the above symmetries. The change in
the action caused by the general coordinate transformations
is

δξ S = 2
√

2κ

∫
dτξν

[
− h−Π+νμ∂̂−xμ + h+Π−νμ∂̂+xμ

]∣∣∣
σ=π

σ=0
, (45)

for the equation of motion (13) and the change by the local
gauge transformations is

δΛS = 2κ

∫
dτΛμ ẋ

μ
∣∣∣
σ=π

σ=0
. (46)

The first expression can be rewritten as

δS = −2
∫

dτξμγ (0)
μ

∣∣∣
σ=π

σ=0
,

where

γ (0)
μ = −√

2κ
[

− h−Π+νμ∂̂−xμ + h+Π−νμ∂̂+xμ
]

= κGμν(x)

h− − h+
[
(h− + h+)ẋν + 2h−h+x ′ν]

+2κBμν(x)ẋ
ν . (47)

The boundary conditions of the open string are given in terms
of this variable,

γ (0)
μ δxμ

∣∣∣
σ=π

σ=0
= 0. (48)

In Ref. [20] the way to gain invariance to the transforma-
tion (44) was shown, and in Refs. [21,22] the open string
action invariant under both (43) and (44) was presented,
which different from the standard action has an additional
surface term,

Sbon = 2
∫

dτ
[
κAμ(x)ẋμ − Āμ(x)(G−1)μνγ (0)

ν

]∣∣∣
σ=π

σ=0
.

(49)
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This term makes the open string theory invariant under
both general coordinate and local gauge transformations, if
the introduced vector fields Aμ and Āμ transform as

δΛAμ = −Λμ,

δξ Āμ = −ξμ. (50)

For each of the coordinates one can fulfill the bound-
ary conditions (48), by choosing either the Neumann or
the Dirichlet boundary condition. If we mark the coordi-
nates with the Neumann condition by xa, a = 0, 1, . . . , p
and the coordinates with the Dirichlet condition by xi , i =
p + 1, . . . , D − 1, the surface term (49) reduces to

Sbon = 2
∫

dτ
[
κAN

a (x)ẋa − AD
i (x)(G−1)i jγ

(0)
j

]∣∣∣
σ=π

σ=0
,

(51)

where AN
a and AD

i are (p+1)- and (D− p−1)-dimensional
vector gauge fields, the former living on the Dp-brane and
the latter orthogonal to the Dp-brane. The Neumann vector
field is as usual coupled to the coordinate time parameter
derivative and the Dirichlet vector field is coupled to the
variable γ

(0)
μ related to the boundary condition, depending on

both world-sheet parameter derivatives of the coordinates.

4.1 Field strengths

It is well known that, in the bosonic string action, the surface
term can be rewritten in the form of the Kalb–Ramond term.
If all the boundary conditions are Neumann, then the action
on the boundary,

Sbon = 2κ

∫
dτ AN

μ (x)ẋμ
∣∣∣
σ=π

σ=0
, (52)

can be rewritten as

Sbon = κ

∫
d2ξ FN

μν εαβ∂αx
μ∂βx

ν, (53)

with

FN
μν = ∂μA

N
ν (x) − ∂ν A

N
μ (x). (54)

For arbitrary choice of the boundary conditions the action
on the boundary is given by (51). Let us restrict our investi-
gation to the following metric:

Gμν =
[
Gab 0

0 Gi j

]
. (55)

In that case, (51) can be rewritten using (48) as

Sbon = 2κ

∫
dτ

[
A(0)

μ (x)ẋμ + A(1)
μ x ′μ]∣∣∣

σ=π

σ=0
, (56)

with

A(0)
a = AN

a ,

A(0)
i = −h− + h+

h− − h+ AD
i + 2(BG−1)

j
i AD

j ,

A(1)
a = 0,

A(1)
i = −2

h−h+

h− − h+ AD
i . (57)

In terms of the field strengths, the surface term becomes

Sbon = 2κ

∫

Σ

d2ξ
√

−ĝ ∂̂+xμFμν∂̂−xν, (58)

Fμν = F (a)
μν + 1

2
F (s)

μν ,

with

F (a)
ab = ∂a A

N
b − ∂b A

N
a ,

F (a)
i j = −h− + h+

h− − h+ (∂i A
D
j − ∂ j A

D
i ) + 2∂i ((BG

−1) k
j A

D
k )

−2∂ j ((BG
−1) l

i A
D
l ),

F (s)
ab = 0,

F (s)
i j = − 2

h− ∂i A
(1)
j + 2

h+ ∂ j A
(1)
i . (59)

The above calculations are done for an open string mov-
ing in constant background fields. If a coordinate dependent
background is assumed, then the field strengthsF (s)

i j andF (a)
i j

will have additional terms, coming from h+−h−
h+h− A(1)

i Γ i∓νρ .
Comparing the boundary actions (58) with the action (11),

we conclude that the addition of the surface term has changed
the background fields by

Gμν → Gμν + F (s)
μν ≡ Gμν,

Bμν → Bμν + F (a)
μν ≡ Bμν. (60)

4.2 The symmetry generators for the open string

The metric and the Kalb–Ramond field are changed in com-
parison with the closed string case to Gμν → Gμν =
Gμν + F (s)

μν and Bμν → Bμν = Bμν + F (a)
μν . Instead of

the transformations (37), the open string symmetry transfor-
mations, for a theory with mixed boundary conditions, are

δGμν = −2(Dμξν + Dνξμ),

δBμν = DμΛν − DνΛμ − 2B ρ
μν ξρ, (61)

where

DμΛν = ∂μΛν + Γ ν
ρμ(G)Λρ

is a covariant derivative corresponding to the metric Gμν . By
B ρ

μ ν we denoted the field strength of the Kalb–Ramond field.
The field itself is changed; however, the field strength of the
additional part is zero and therefore Bμνρ = Bμνρ.
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The generator of the transformation is

G =
∫

dσ
[
2ξμπμ + 2κ(2ξμBμν + ΛμGμν)x

′ν], (62)

with

πμ = κGμν(x)ẋ
ν − 2κBμν(x)x

′ν . (63)

Using the explicit form of the transformed metric, we obtain
the connection

Γμ,νρ(G) = Γμ,νρ − 2∂ν∂ρ A
D
μ . (64)

If one choses only Neumann boundary conditions, the
metric remains the same as F (s)

μν = 0, so that only the Kalb–
Ramond field changes, but not its field strength.

5 Conclusion

We considered the general coordinate and the local gauge
transformations of the bosonic string, and we showed that
they are T-dual to each other. We started with the bosonic
string theory in a conformal gauge and in a gauge invariant
form. One of the purposes of the latter was to find the separa-
tion of the Hamiltonian into two energy-momentum tensors
satisfying two copies of the Virasoro algebras. These tensors
are represented as products of currents, which are used for
defining the generators of symmetries that were investigated.
The generators were defined as the integrals over the spatial
world-sheet parameter of the weighted currents.

Given the form of the generator, we investigated how it
affects the variables, whose transformation is defined by a
Poisson bracket between the generator of symmetry and the
corresponding variable. We were interested in finding the
explicit form of the change in the energy-momentum tensor
caused by such a transformation. This form of transforma-
tion is used as a classical analog of the quantum transfor-
mation, known to preserve the Virasoro algebra between the
energy-momentum tensor components. So, both the initial
and the transformed energy-momentum tensor describe the
same physics. Because of that, we were interested in find-
ing the small variations of background fields such that the
change in energy-momentum tensor they cause is exactly the
considered transformation. In fact, if there exists a generator
such that the described equality is possible, then the obtained
transformations of space-time fields represent the symmetry
of the theory.

We considered the standard closed string theory, and a
modified open string theory which in comparison to the stan-
dard open string theory has an additional surface term. This
term was chosen in such a way as to cancel the obstacle for

the closed string symmetries to be the open string symme-
tries as well. Introduction of the Neumann vector fields on the
boundary is equivalent to a change of Kalb–Ramond field. In
the case considered here, however, the vector fields are not
coupled only to the time derivative of the coordinates but also
to the functions which define the boundary conditions on the
string endpoints. Therefore, both metric and Kalb–Ramond
field are changed by the surface term.

We found the transformations of the background fields,
which transform the energy-momentum tensor in such a way
that the Virasoro algebra is preserved. It turned out that the
generators of the symmetries (40) can be separated in such
a way that one part of the generator, linear in x ′μ, represents
the generator of the well-known local gauge transformation
of the Kalb–Ramond field and the other part, proportional to
πμ, generates the general coordinate transformations. Since
these quantities are T-dual κx ′μ ∼= πμ, we conclude that
these symmetries are T-dual. Thus, we showed that T-duality
has an additional feature: it interchanges the symmetries of a
theory. The generator of general coordinate transformations
and local gauge transformations of the initial theory is T-
dual to the generator of local gauge transformations and the
general coordinate transformations of the T-dual theory.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Commons license, and indicate if changes were made.
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