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Abstract

We consider a linear quantum amplifier consisting of NA two-level atoms and study the problem of
amplification of N -photon states. The N -photon states are associated with N -quantum states of the
harmonic oscillator. We show that the process of interaction of the electromagnetic field with atoms
can be associated with some transformation of the phase space and functions defined on this phase
space. We consider the Husimi functions QN (q, p) of N -quantum states of the harmonic oscillator,
which are defined on the phase space, investigate transformation of these functions, and find an explicit
form of the density matrix of the amplified N -photon state.
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1. Introduction

We consider the process of interaction of a single-mode electromagnetic field with a two-level atomic

medium. We assume that the medium is described by the Jaynes–Cummings model. We are interested

in the dynamics of the electromagnetic field only; thus we assume that the state of the medium in the

process of interaction does not change. In fact, the complete system is separated into two subsystems.

Such separated systems are described by the density matrix [1–3]. The evolution equation satisfying the

density matrix is known. It is solved by replacing the density operator with quasiprobability distributions.

The quasiprobability distribution functions such as Wigner functions [4], Glauber–Sudarshan func-

tions [5,6], and Husimi–Kano functions [7,8] are often used in quantum optics. The Glauber–Sudarshan

P -distribution was employed in [9–11] in order to obtain information on the properties of the field at

the amplifier output. In [12], it was suggested to use the Husimi–Kano Q-distribution instead of the

Glauber–Sudarshan P -distribution, the evolution equation for the Q-function was obtained, its solution

was found for a particular case, and its properties were studied.
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In this paper, we use the original method, which was developed in [13–17] to analyze the solutions

of the equation for the Husimi function. The essence of the method consists in the fact that a certain

transformation of the phase space of the system is related to the dynamical process occurring in it. The

transformations of the phase space generate the transformations of the functions defined on this phase

space. Transformations of functions have different forms, depending on both the nature of the dynamical

process and the type of functions defined on the phase space. In this paper, we consider the Husimi Q-

functions. In [17], we have shown that in the case of the complete inverse population of two-level atomic

systems forming the amplifier, the transformation of the phase space, corresponding to the amplification

of the field passing through the amplifier reads

(q, p) → (λq, λp), |λ|2 ≤ 1. (1)

It corresponds to scaling of the phase space, and the corresponding transformation of functions is

Q(q, p) → Q̃(q, p) = λ2Q(λq, λp). (2)

In [13], we showed that if Q(q, p) is the Husimi function of quantum state, then λ2Q(λq, λp) is also the

Husimi function of another quantum state, provided that |λ|2 ≤ 1.

Here, we consider a more general situation, namely, we assume that a part of atoms forming the

amplifier are in the ground state, and the rest of them are in the excited state. In this case, the dynamics

of the process of interaction can also be associated with transformation of the phase space, but this

transformation and the corresponding transformation of functions have a more complex form than (1)

and (2). We describe these transformations and find an explicit form of the density matrix of an amplified

N -photon state.

We treat the states of the harmonic oscillator only, but they can be identified as photons, which is a

standard practice in quantum optics. In this way, the analysis of the amplification process and its results

are also applicable for photons.

2. Quantum Amplifier Structure

We consider a system of NA two-level atoms, N1 of which are excited, and N0 atoms are in the

ground state, with N0 < N1. These atoms are interacting with the one-mode quantum field, for which

we assume that it is an eigenmode of a free field, and that its frequency is resonant with the atomic

frequency. We assume also that the populations N1 and N0 are kept constant in time due to some pump

and loss mechanism.

Let ρ̂ be the density operator of the electromagnetic field. The master equation for ρ̂ reads [1, 12]

∂ρ̂

∂t
= −γN1(ââ

†ρ̂− 2â†ρ̂â+ ρ̂ââ†)− γN0(â
†âρ̂− 2âρ̂â† + ρ̂â†â). (3)

Here, â† and â are the creation and annihilation operators of the electromagnetic field, N1 and N0 are

the populations of the upper and lower levels of the two-level atom, and γ is the amplification coefficient.

Using the relation between the density matrix and the Husimi function, we can pass from the operator

equation (3) to an ordinary differential equation for the Husimi function. Using this equation, the
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expression for the Husimi function for the state at the quantum amplifier output was obtained in [12]; it

is

Q(α, t) =

∫
d2βQ(β)

1

πm
exp

[
−|α− βG|2

m

]
. (4)

Here

G(t) = exp[2(N1 −N0)γt], m =
N0

N1 −N0
(G2 − 1). (5)

In [17], we considered the case m = 0 corresponding to the situation where all atoms are in the excited

state. In this case, the Husimi function of the state after the amplification is given by a simple expression,

Qout(α, t) =
1

G2
Qin(α/G) =

〈α

G
|ρ̂in|α

G

〉
. (6)

We found an explicit form of the density matrix of the amplified state in the case where the input state

is a superposition of an arbitrary number of Fock states.

The simplest case takes place if the input state is the pure N -photon state. In this case, at the output

of the amplifier one has the state described by the following density matrix:

ρ̂λN =

∞∑
j=0

λ2N+2 (1− λ2)j(N + j)!

j!N !
|N + j〉〈N + j|, (7)

where λ = G−1. The density matrix (7) is diagonal. Its firstN diagonal elements with labels 0, 1, . . . , N−1

are equal to zero, and the remaining diagonal elements are

FN
N+j =

(1− λ2)j(N + j)!

j!N !
λ2N+2, j = 0, 1, . . . (8)

The values (8) form a negative binomial distribution, and the elements of this distribution are given

by [19]

f(k, r, p) =

(
r + k − 1

k

)
prqk =

(r + k − 1)!

(r − 1)!(k)!
pr(1− p)k, p+ q = 1, k = 0, 1, 2, . . . (9)

They are defined by two parameters r and p, and the value k is the element label in the distribution. In

our case, r = N + 1, k = j, and p = λ2, i.e., we have

FN
N+j = f(j,N + 1, λ2). (10)

The density matrix (7) of the amplified N -photon state was found in [17]. In this paper, we consider

the case where the population levels N1 and N0 (N1 > N0) can take arbitrary values. As an input state,

we take the N -photon state and find the density matrix of the corresponding amplified state. We use

formula (7) in our subsequent calculations. In order to distinguish the density matrices of amplified

states obtained by an amplifier with N0 = 0 from the density matrices of amplified states obtained by

an amplifier with arbitrary N0 and N1, we denote the former by ρ̂, and the latter by ˜̂ρ.
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3. The Density Matrix of Amplified State

In order to find the Husimi function Q̃(α) of the amplified state, obtained due to passing trough a

linear quantum amplifier with arbitrary values of populations N1 and N0 (N0 < N1), one should calculate

the integral (4). The function Q(β) is the Husimi function of the input state. For the input state, we

take the quantum state of the harmonic oscillator |N〉; its Husimi function has the following form:

QN (β) = 〈β|N〉〈N |β〉 = e−|β|2 |β|2N
N !

. (11)

Substituting the above Husimi function into the integral (4) one obtains

Q̃λ
N (α) =

1

πmN !

∫
d2β e−|β|2 |β|2N exp

[
−|α− βG|2

m

]
, (12)

which after integration becomes

Q̃λ
N (α) =

1

N !(m+G2)

mN

(m+G2)N
LN

(
− |α|2G2

m(m+G2)

)
exp

(
− |α|2
m+G2

)
. (13)

Here LN (x) is the Laguerre polynomial

LN (x) = N !
N∑
k=0

(−1)k
(
N

k

)
xk

k!
. (14)

In [17], we developed a method that allows one to derive the density matrix from the Husimi function of

the form similar to (13). Applying this method, we obtain the density matrix ˜̂ρNλ
of the amplified |N〉

state; it reads

˜̂ρNλ
=

mN

(m+G2)N+1

∞∑
k=0

N∑
l=0

(
N

N − l

)(
k +N − l

n− l

)
×
( G2

m(m+G2)

)N−l(
1− 1

m+G2

)k|k +N − l〉〈k + n− l|, (15)

where λ−2 = m+G2.

When m = 0, the summation over l reduces to only one term (l = 0), so that the density matrix

becomes

˜̂ρNλ
(m → 0) =

1

G2(N+1)

∞∑
k=0

(
k +N

N

)(
1− 1

G2

)k|k +N〉〈k +N |

=
1

G2(N+1)

∞∑
k=0

(n+ k)!

N !k!

(
1− 1

G2

)k|k +N〉〈k +N |. (16)

Now we consider some special cases. Let the input state at the entrance of the amplifier be the

vacuum state |0〉. The Husimi function of |0〉 has the form

Q0(α) = e−|α|2 . (17)

324



Volume 40, Number 4, July, 2019 Journal of Russian Laser Research

Substituting this expression into (12), we obtain the expression for the Husimi function of the amplified

state |0〉out,
Q̃λ

0(α) =
1

m+G2
exp

(
− |α|2
m+G2

)
. (18)

We see that expression (18) coincides with the expression for the Husimi function of the state |0〉out
obtained in [17] assuming λ−2 = m+G2. Therefore,

˜̂ρ0λ = ρ̂λ0 . (19)

Let now the input state be |1〉. In this case, the state |1〉out appearing at the amplifier output has

the following density matrix:

˜̂ρ1λ =
m

(m+G2)2

[ ∞∑
k=0

(
(k + 1)G2

m(m+G2)

)(
1− 1

m+G2

)k

|k + 1〉〈k + 1|
]

+
m

(m+G2)2

[ ∞∑
k=0

(
1− 1

m+G2

)k

|k〉〈k|
]
. (20)

Comparing expression (20) with the density matrix of the amplified |N〉 state (7), we see that

˜̂ρ1λ =
m

m+G2
ρ̂λ0 +

G2

m+G2
ρ̂λ1 . (21)

In the general case, one has

˜̂ρNλ
= mN

N∑
l=0

N !λ2N+2

l!(N − l)!

(
G2λ2

m

)N−l ∞∑
k=0

(1− λ2)k
(N − l + k)!

k!(N − l)!
|N − l + k〉〈N − l + k|

= mNλ2N
N∑
l=0

N !

l!(N − l)!

(
G2

m

)N−l

ρ̂λN−l. (22)

We see that the density matrix (22) of the state, which is obtained from the N -photon state |N〉, after
passing through the amplifier with arbitrary values of the population levels N1 and N0, is the sum of

the density matrices ρ̂λN−l of (N − l)-photon states passed through the amplifier, whose population of

the ground level is N0 = 0, i.e., trough the completely excited medium. Properties of such states were

studied in [17] – they have the form (7). These density matrices are diagonal, with either zeros or values

from the negative binomial distribution on the main diagonal. So in the density matrix ρ̂λN−l, the first

(N − l − 1) numbers on the diagonal are zeros followed by values FN
N+j , j = 0, 1, . . . given in (16). The

total density matrix (22) is the sum of such matrices multiplied by the coefficients that are elements of

the binomial distribution
(
1 +G2/m

)N
. Thus, the matrix elements of the density matrix (22) have the

form of sums of the products of the elements of the binomial distribution and the elements of the negative

binomial distribution.

Let us note that in the case of a completely excited medium, when the population of the ground level

is N0 = 0, the N -photon amplified state, |N〉out, contains only states with photon number equal to or

greater than N , namely, |N〉, |N +1〉, |N +2〉, . . . However, if the population of the ground level N0 > 0,

then the output state contains every k-photon state, including the vacuum state (k = 0).
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Now we find the form of the diagonal elements of matrix (22); for this, we present expression (22) as

˜̂ρNλ
=

N∑
p=0

SN
p ρλp , (23)

where the coefficients SN
p are

SN
p = mNλ2N

(
G2

m

)p
N !

p!(N − p)!
= m(N−p)λ2NG2p

(
N

p

)
. (24)

The density operator ρ̂λp given in Eq. (16) can be rewritten as follows:

ρ̂λp =
∞∑
j=0

F p
p+j |p+ j〉〈p+ j|, (25)

where F p
p+j are elements of the negative binomial distribution.

Now we can write the density operator given by (22) as

˜̂ρNλ
=

∞∑
k=0

HN
k |k〉〈k|, (26)

Here, the coefficients HN
k are

HN
k =

k∑
j=0

SN
j F j

k , k = 0, 1, . . . , N, HN
k =

N∑
j=0

SN
j F j

k , k = N + 1, N + 2, . . .∞. (27)

Let us evaluate the trace of the density operator (22)

Tr(˜̂ρλN ) = Tr

(
mNλ2N

N∑
l=0

N !

l!(N − l)!

(
G2

m

)N−l

ρλN−l

)

= mNλ2N
N∑
l=0

N !

l!(N − l)!

(
G2

m

)N−l

Tr

⎛⎝ ∞∑
j=0

F p
p+j |p+ j〉〈p+ j|,

⎞⎠
= mNλ2N

N∑
l=0

N !

l!(N − l)!

(
G2

m

)N−l ∞∑
j=0

F p
p+j

=

(
m

m+G2

)N N∑
l=0

(
N

l

)(
G2

m

)N−l

= 1. (28)

Thus, by direct calculation we showed that the trace of the operator (22) is equal to unity. Operator (22)

is the diagonal operator and the sum of its diagonal elements
∑∞

k=0H
N
k = 1. The trace of the operator

(˜̂ρNλ
)2 reads

Tr
[
(˜̂ρNλ

)2
]
=

∞∑
k=0

(HN
k )2 ≤ 1. (29)

Therefore, operator (22) is actually the density operator of the quantum state.
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4. Conclusions

The aim of this paper was to investigate the relation between the dynamics of physical processes

and the transformations of the phase space and the functions defined on the phase space. The problem

was addressed by considering a linear quantum amplifier. In this case, we found explicitly interrelations

between the elements describing the dynamics and the transformations in the phase space.

We showed that the state of the quantum amplifier has a significant influence on the state of the

electromagnetic field which passed trough it. In the case where the quantum amplifier is completely

inverted (N0 = 0), the transformation of the phase space and Husimi functions defined on it are deter-

mined by formulas (1) and (2). If both levels of the quantum amplifier, ground and excited, have nonzero

population, the transformation of Husimi functions has a more complex form. It is determined by for-

mula (4) which, in the particular case where the input state is the ground state of harmonic oscillator,

after calculating the integral, takes the form (18). Expression (18) is structurally similar to the Husimi

function transformed by (2), but the fundamental difference between transformations (2) and (4) consists

in the fact that (2) is a local transformation, and (4) is a nonlocal transformation. Thus, the general

structure of transformations of the phase space and the functions specified on the phase space is much

more complex than considered in [17].
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