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Abstract
We propose a new method for the derivation of Husimi symbols, for operators that are given in
the form of products of an arbitrary number of coordinates, and momentum operators, in an
arbitrary order. For such an operator, in the standard approach, one expresses coordinate and
momentum operators as a linear combination of the creation and annihilation operators, and then
uses the antinormal ordering to obtain the final form of the symbol. In our method, one obtains
the Husimi symbol in a much more straightforward fashion, departing directly from operator
explicit form without transforming it through creation and annihilation operators. With this
method the mean values of some operators are found. It is shown how the Heisenberg and the
Schrödinger–Robertson uncertainty relations, for position and momentum, are transformed
under scale transformation q p q p( ; ) ( ; )λ λ→ . The physical sense of some states which can be
constructed with this transformation is also discussed.

Keywords: average values, Husimi function, polynomials, operators, scaling transform,
uncertainty relation

1. Introduction

In classical statistical mechanics, in order to find the mean
value of any function F q p( , ) defined on the phase space, one
has to integrate that function over the phase space, weighted
with an appropriate probability density function, i.e.

F F q p q p q p( , ) ( , )d d . (1)∫ ρ=

Here, q p( , )ρ is a probability density, which means that the
integral of this function over a certain region of phase space
gives the probability of having the system in that region of the
phase space. In quantum mechanics, to each observable
F q p( , ) one assigns an operator Â. However, if one wants to

keep the resemblance to classical statistical mechanics, i.e. to
still compute the mean value of an operator by some formula
similar to (1), some additional steps are needed. First, an
analogue of the classical distribution function has to be
chosen, and this analogue comes in the form of the
quasidistribution function D q p( , ). The mean value is now
calculated similarly to (1) as:

A A q p D q p q pˆ ( , ) ( , )d d . (2)D∫= ρ

A few notes about the function A q p( , )D are in order.
This function should be assigned to each operator Â. The
process of assignment is far from trivial, and is one the main
themes of this work. The function is defined on the whole
phase space, and must fulfil the condition that the mean value
Â〈 〉 of an operator Â at a given state, described by the
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quasidistribution D q p( , ), is given by (2). The function
A q p( , )D is called the symbol of the operator Â, corre-
sponding to the quasidistribution D q p( , ). In quantum
mechanics a number of quasidistribution functions are used,
hence, different symbols are assigned to the same operator, Â,
depending on the quasidistribution [1–5]. So, a problem arises
—how do we find the symbol of the given operator for the
concrete quasidistribution?

In a number of cases the answer to this question is
known. Concretely, the symbols are known for the following
quasidistributions: Wigner function W q p( , ) [8], Husimi-
Kano Q q p( , ) [6, 7] and Glauber-Sudarsan P q p( , ) [9, 10]. If
the operator Â comes in the form of creation and annihilation
operators’ bivariate polynomial, then its W, Q, and P-symbols
are obtained using operations of symmetrization, antinormal
and normal ordering [11–13].

The sequence of the actions is as follows: first, in a given
operator which is the function of the coordinate and
momentum operators, one expresses the mentioned operators
as corresponding linear combinations of creation and anni-
hilation operators. To this form of the operator the procedure
of symmetrization or antisymmetrization, depending on the
quasiprobability used, is applied. For this ordered form the
scalar function can be directly obtained. This procedure, in
principle, solves the problem of the determination of the
symbols for the polynomial operators, but if the polynomial is
complicated, the procedure can be very tedious.

In this paper, we propose a new, simpler, way of deter-
mining the Q-symbols. In our approach, we simply replace
operators q̂ and p̂ at the places where they stand in the ori-
ginal operator, with differential operators which we will
define below. This is done explicitly, without using any
operations such as symmetrization or operator ordering. The
obtained differential operator acts on the Husimi function
giving the appropriate Q- symbol of the original operator. The
crucial fact is that for obtaining the Q- symbol of an operator,
the explicit form of the Husimi function for a given state is
not needed. One uses only its general structure which is the
same for all concrete Husimi functions. In section 2 we give
the Husimi function in a form that is used below. Our novel
method is presented in section 3.

In section 4, with the help of this method, we evaluate the
mean values of some operators and analyze the behavior of
the uncertainty relations under scale transformation
q p q p( ; ) ( ; )λ λ→ . We show that as a result of the transfor-
mation, the right-hand side of the inequalities increases. This
result can be used to explain some of the tunnelling
phenomena.

In section 5 we investigate the properties of ‘stretched
Fock states’. These states can be achieved by applying of the
scale transformation to Fock states of the harmonic oscillator.

2. Husimi function and the mean value problem

The Husimi functions are determined by the density operator
and the set of coherent states of a harmonic oscillator [6, 7].

Let us consider some state, described by the density operator
ρ̂, and x α〈 ∣ 〉 is a coherent state. Then, the Husimi function of
the state ρ̂ is defined by

( )Q x x y y x y, * 1
( , ) d d . (3)∫α α

π
α ρ α=

Here, ir iα α α= + is an arbitrary complex number, and
x y( , )ρ is the kernel of the density operator in the coordinate

representation. For the complex number α, which determines
the coherent state, we will use expression q p( i ) 2α = +
and will regard the Husimi function Q as a function of p and q

Q q p q p q p( , )
1

2
, ˆ , . (4)

π
ρ=


Here q p,∣ 〉 is the coherent state, given in terms of the
variables q and p:

x q p x q px qp,
1

exp
1

2
( ) i

i

2
. (5)

1 4
2⎜ ⎟⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥π

= − − + −

The Husimi function of the state, given by the wave
function x( )ψ , has the following form

Q q p y q py y

x x q px x y

C F q p x y x y

( , )
1

2

1
exp

1

2
( ) i *( )

( ) exp
1

2
( ) i d d

( , ; . )d d . (6)

3 2
2

2

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫

π
ψ

ψ

= − − +

× − − −

=

Using the Husimi function one can also determine the
mean value of the operator, by applying the formula (2).

The Q-symbol of the operator, Â, in the standard
approach, is determined with the help of the antinormal
ordering of the creation and annihilation operators in the
expression for the operator, Â. If the operator, Â, is a low
order polynomial of the creation and annihilation operators, or
of coordinates and momenta, then one can find the explicit
form of its symbols by performing the antinormal ordering. In
a number of cases, however, the procedure could be tedious.
In this paper we propose a new procedure for determining the
Q- symbols of an operator of arbitrary form, without using
any operator ordering.

3. Deriving the Husimi symbols without antinormal
ordering

Let us introduce the operator

X q
q p

ˆ 1

2

i

2
. (7)= + ∂

∂
+ ∂

∂

Using the explicit form of the function (6), one can prove the
following formula

XQ q p q p qQ q p q p

x x x x

ˆ ( , )d d ( , )d d

( ) *( )d . (8)

∫ ∫
∫ ψ ψ

=

=

2
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The right-hand side of (8) is, by definition, the mean value of
the coordinate operator. So, this equation shows that the mean
value of the coordinate operator, when the state is described
by the Husimi function, may be represented by the left-hand
side of (8). So, in order to find the mean value of the
coordinate operator x̂ , when the quantum state is described by
the Husimi function, one should apply the operator X̂ (7) on
the Husimi function of the corresponding state and integrate
the obtained result over the whole phase space (q, p). The
equation (8) presents two alternative expressions for the mean
value of the coordinate operator, one using the wave function
for the description of the states and the other using the Husimi
function.

Let us generalize the obtained results to the case of
arbitrary exponent of the coordinate operator. It can be easily
seen, that the mean value of some operator K X( ˆ ), where K is
a polynomial of one variable, can be calculated by the fol-
lowing formula

( )K X C K q F q p x y x y q pˆ ˜ ( ) ( , ; , )d d d d . (9)∫=

In the case where K X( ˆ ) is a monomial K X X( ˆ ) ( ˆ )n= and
with the help of mathematical induction one can prove that
the functions K q˜ ( )n are related by the recurrent relation

K q qK q
q

K q K˜ ( ) ˜ ( )
1

2
˜ ( ), ˜ 1. (10)n n n1 0= − ∂

∂
=+

K q
n

s n s
q˜ ( )

( 1) !

! ( 2 ) !4
. (11)n

s n

s

s
n s

0 [ 2]

2∑= −
−⩽ ⩽

−

Here n[ 2] is the integer part of a number n 2.
So, in order to derive the mean value of the operator

K X( ˆ ), one has to apply this operator to the Husimi function
and integrate over the parameter space (q, p), which deter-
mines the coherent state (5). The result is a polynomial of the
variable q.

Almost the same procedure can be used in order to obtain
the mean values of the momenta operators. To this end, in
addition to the operator X̂ defined in (7), consider the operator
P̂ defined as:

P p
q p

ˆ i

2

1

2
. (12)= − ∂

∂
+ ∂

∂

Operators (7), (12) satisfy the commutation relation

P X i[ ˆ, ˆ ] . (13)= −

For the operator P̂ the following relation holds

PQ C p
q p

F q p x y x y

C p q x F q p x y x y

ˆ i

2

1

2
( , ; , )d d

( i i ) ( , ; , )d d . (14)

⎛
⎝⎜

⎞
⎠⎟∫

∫

= − ∂
∂

+ ∂
∂

= + −

Integrating this expression over the phase space parameters
(q, p), we obtain

PQ q p q p C pF q p x y x y q pˆ ( , )d d ( , ; , )d d d d . (15)∫ ∫=

By induction one can prove that

p P Q q p q p

C L p F q p x y x y q p

ˆ ˆ ( , )d d

( ) ( , ; , )d d d d . (16)

n n

n

∫
∫

=

=

The polynomials Ln(p) are related by the following recurrence
relation, which is the analogue of (10)

L p pL p
p

L p L

L p
n

s n s
p

( ) ( )
1

2
( ), 1;

( )
( 1) !

! ( 2 ) !4
. (17)

n n n

n

s n

s

s
n s

1 0

0 [ 2]

2∑

= − ∂
∂

=

= −
−

+

⩽ ⩽

−

Here n[ 2] is the integer part of a number n 2.
Let us now consider the following more general problem.

Consider the operator which is the monomial of the coordi-
nate and momenta operators. In the coordinate representation
it can be represented as the polynomial of operators x and

x

∂
∂
.

More precisely, it will be the monomial expression

A x
x x

x x
x

ˆ , i i i . (18)⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠− ∂

∂
= − ∂

∂
… − ∂

∂

The mean value of this operator in the state x( )ψ is
determined by the formula

A C x y q py

x q px

A x
x

x x y p q

ˆ *( ) exp
1

2
( ) i

· exp
1

2
( ) i

, i ( )d d d d . (19)

2

2

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

∫ ψ

ψ

= − − +

− − −

× − ∂
∂

One can find the expression for this mean value with the help
of mathematical induction. Supposing that the mean value of
the operator (19) is determined by

A PX XPQ q p q pˆ ˆ ˆ ˆ ˆ ( , )d d , (20)∫= …

i.e. supposing that the following equality holds

PX XPQ q p q p

C x y q py

x q px

A x
x

x x y p q

ˆ ˆ ˆ ˆ ( , )d d

*( ) exp
1

2
( ) i

· exp
1

2
( ) i

, i ( )d d d d . (21)

2

2

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

∫
∫ ψ

ψ

…

= − − +

− − −

× − ∂
∂

Let us now consider the following operator

xA x
x

x
x

x x
x

ˆ , i i i . (22)⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠− ∂

∂
= − ∂

∂
… − ∂

∂

3
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Its mean value has a form

xA C x y q py

x q px

xA x
x

x x y p q

C p qX x y x

y q py

x q px

A x
x

x

XPX XPQ q p p q

ˆ *( ) exp
1

2
( ) i

· exp
1

2
( ) i

, i ( )d d d d

d d ˆ d d *( )

exp
1

2
( ) i

exp
1

2
( ) i

· , i ( )

ˆ ˆ ˆ ˆ ˆ ( , )d d . (23)

2

2

2

2

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

∫

∫ ∫

∫

ψ

ψ

ψ

ψ

= − − +

− − −

× − ∂
∂

=

× − − +

× − − −

− ∂
∂

= …

This result shows that in order to obtain the mean value
of the operator xÂ, one has to apply the operator XPX XPˆ ˆ ˆ ˆ ˆ…
to the Husimi function Q q p( , ) and integrate the obtained
result over p qd d .

Analogously, one can consider the operator

i
x

A x
x

x x
x x

x

ˆ , i

i i i . (24)

⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− ∂
∂

− ∂
∂

= − ∂
∂

− ∂
∂

… − ∂
∂

Its mean value has the form

x
A C x y q py

x q px

x
A x

x
x x y p q

i ˆ *( ) exp
1

2
( ) i

· exp
1

2
( ) i

i , i ( )d d d d . (25)

2

2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫ ψ

ψ

− ∂
∂

= − − +

− − −

× − ∂
∂

− ∂
∂

Integrating by parts one obtains

C x y q py x q px

p x q A x
x

x x y p q

C p qP x y x y q py

x q px

A x
x

x PPX XPQ q p p q

*( ) exp
1

2
( ) i

1

2
( ) i

· ( i i ) , i ( )d d d d

d d ˆ d d *( ) exp
1

2
( ) i

exp
1

2
( ) i

, i ( ) ˆ ˆ ˆ ˆ ˆ ( , )d d . (26)

2 2

2

2

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

∫

∫ ∫

∫

ψ

ψ

ψ

ψ

− − + − − −

− + − ∂
∂

= − − +

× − − −

− ∂
∂

= …

From formulas (23), (26) it can be seen that, in order to
determine the mean value of the operator (18), one has to
apply the operators X Pˆ , ˆ to the Husimi function Q q p( , ) in
the order in which the operators x, i

x
− ∂

∂ appear in the operator

( )A x, i
x

− ∂
∂ , and integrate this result over (q, p).

4. Evaluation of mean values and uncertainty
relations

Let us consider a state with a Husimi function Q q p( , ). It was
shown in [14] that if Q(q, p) is a Husimi function of a
quantum state and 12λ < , then the transformed function

Q q p( , )2λ λ λ is a Husimi function of some quantum state too.
A state with the Husimi function Q q p( , )2λ λ λ we call a
stretched state.

In this section we consider the problem of evaluation of
average values of some operators. Let us consider a Hamil-
tonian operator

( )H q p¯
2

ˆ ˆ . (27)2 2ω= +

The average value of the energy Ē of a state with a
Husimi function Q q p( , ) reads

( )

( )

E q p Q q p q p

q p Q q p q p

¯
2

1 ( , )d d

2
( , )d d

2
. (28)

2 2

2 2

∫
∫

ω

ω ω

= + −

= + −



 

The average value of the energy Ēλ of a stretched state
with a Husimi function Q q p( , )2λ λ λ reads

( )

( )

E q p Q q p q p

q p Q q p q p

E

¯
2

1 ( , )d d

1

2
( ) ( ) ( , )d( )d( )

2

1 ¯ 1

2
. (29)

2 2 2

2
2 2

2

2

2

∫
∫

ω λ λ λ

λ
ω λ λ λ λ λ λ ω

λ
λ

λ
ω

= + −

= + −

= + −

λ


 



One can see from the expression (29) that energy of a
state increases after the transform q p q p( ; ) ( ; )λ λ→ .

Let us consider now the Heisenberg uncertainty relation

q q p p

1

4
,

ˆ ˆ , ˆ ˆ , (30)

qq pp

qq pp

2

2 2 2 2

σ σ

σ σ

⩾

= − = −



and the Schrödinger–Robertson uncertainty relation

pq qp q p

1

4
;

1

2
ˆ ˆ ˆ ˆ ˆ ˆ . (31)

qq pp qp

qp

2 2σ σ σ

σ

− ⩾

= + −



The dispersions qqσ and ppσ can be evaluated with the
help of the Husimi functions

( )

( )

q Q q p q p qQ q p q p

p Q q p q p

pQ q p q p

1

2
( , )d d ( , )d d ,

1

2
( , )d d

( , )d d . (32)

qq

pp

2
2

2

2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫ ∫

∫

∫

σ

σ

= − −

= −

−

4
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Also

qpQ q p q p

qQ q p q p pQ q p q p

( , )d d

( , )d d ( , )d d . (33)

qp ∫
∫ ∫

σ =

−

For the stretched states the formulas (32), (33) take the
form

( )

( )

q Q q p q p

q Q q p q p

p Q q p q p

p Q q p q p

qp Q q p q p

q Q q p q p p Q q p q p

1

2
( , )d d

( , )d d ,

1

2
( , )d d

( , )d d ,

( , )d d

( , )d d ( , )d d . (34)

qq

pp

qp

2 2

2
2

2 2

2
2

2

2 2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫

∫
∫

∫
∫

∫ ∫

σ λ λ λ

λ λ λ

σ λ λ λ

λ λ λ

σ λ λ λ

λ λ λ λ λ λ

= −

−

= −

−

=

−

λ

λ

λ

From the formulas (34) one can find values of dispersions
qqσ and ppσ for stretched states.

1 1

2
,

1 1

2
,

1
. (35)

qq qq

pp pp qp qp

2

2

2

2

2

2 2

σ
λ

σ λ
λ

σ
λ

σ λ
λ

σ
λ

σ

= + −

= + − =

λ

λ λ

We see that for stretched states the Heisenberg uncer-
tainty relation reads

( )

( )

( )

1

1

2
1

1

4
1

1

4
, (36)

qq pp qq pp

qq pp

4

2

2 2

4
2

⎛
⎝⎜

⎞
⎠⎟

σ σ
λ

σ σ

λ σ σ

λ
λ

=

+ − +

+ − ⩾

λ λ



and the Schrödinger–Robertson uncertainty relation for
stretched states reads

(

( ) ( )( )

1

1

2
1

1

4
1

1

4
. (37)

qq pp qp qq pp qp

qq pp

2
4

2

2 2 2

4
2⎟⎞⎠

σ σ σ
λ

σ σ σ

λ σ σ λ
λ

− = −

+ − + + − ⩾

λ λ λ



One can interpret the inequalities (36) and (37) in the
sense that the scaling transform q p q p( ; ) ( ; )λ λ→ provides
an ‘effective Planck’s constant’ value eff

2λ=  . For
12λ ≪ the effective Planck’s constant satisfies the

inequality

. (38)eff ≫ 

A similar situation appeared in the case of correlated

states [15]. For these states the value of r1eff
2= − 

depends on the correlation coefficient r xp x pσ σ σ= between
the coordinate and momentum.

The value of Planck’s constant ℏ is responsible for purely
quantum phenomena such as quantum tunnelling [16]. The
well-known quasiclassical formula for the transmission
probability through the potential barrier U(x) reads

D m U x E xexp
2

2 ( ( ) ) d . (39)
a

b⎛
⎝⎜

⎞
⎠⎟∫≈ − −



Here m is the mass of particle and E is its energy.
The above formula together with the inequality (38)

shows that for the larger constant zrmeff the quantum tun-
nelling effect is enhanced. In [17], it was advocated that the
transmission probability for the correlated wave packets with
the nonzero correlation coefficient r between the coordinate
and the momentum can be higher than for uncorrelated
packets, and that the increase of this probability can be
described by replacing the true Planck’s constant ℏ with the

effective constant r1eff
2= −  . This remark has been

done in [15] and developed in [18–22].
We believe that, as correlated states, the stretched states

can be used to explain some physical phenomena.
The scaling transformation arises in a natural way in a

number of physical problems and especially in the problem of
the most quiet phase insensitive amplification of a quantum
state [23]. In this case, the parameter λ is equal to the inverse
value of the coefficient of amplification G 1 λ= .

5. Stretched fock states

We will now, as an example, apply the general obtained
results to the case of the harmonic oscillator.

It was shown in [24] that a Fock state of the harmonic
oscillator is transformed under the scale transformation in the
mixed state, which is described by the density matrix

( )
N

N k

k

N k N k

ˆ
!

( )!

!

1 , 1. (40)

N

N

k

k

2 2

0

2 2

∑ρ λ

λ λ

= +

− + + <

+

=

∞

These Fock stretched states consist of pure states
N k k, 0, 1, 2, .∣ + 〉 = …∞ Every one of these pure states
N k∣ + 〉 is present in the mixed state with the probability

( )c
N k

N k

( )!

! !
1 . (41)k

N
N k2 2

2λ λ= + −
+

The distribution of pure states is described by a negative
binomial distribution [25]

f k r p r k
k

p q p q

k

( , , ) 1 ; 1;

0, 1, 2, (42)

r k⎜ ⎟
⎛
⎝

⎞
⎠= + − + =

= …
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Using the properties of this distribution, it is possible to
find the average photon number in a stretched state (40)

( )n
N

N k
N k

k

N

!
( )

( )!

!
1

1
1. (43)

N

k

k2 2

0

2

2

∑λ λ

λ

= + + −

= + −

+

=

∞

And the dispersion of the photon number

( )
n n

N
( )

( 1) 1
. (44)n

2 2
2

4
σ

λ

λ
= − =

+ −

The dispersions ,qq ppσ σ and qpσ for the stretched Fock
states (40) can be found directly with the help of the
expression (40).

n q n n
1

2
. (45)2 = +

( )

( )
N

N k
N k

k

N N

!

1

2

( )!

!
1

1

2

1
( 1) 1

1

2
. (46)

qq

N

k

k

qq

2 2

0

2

2
2

2

2

2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∑σ λ λ

λ
λ

σ

λ
λ

λ

= + + + −

= + + + −

= + −

λ

+

=

∞

We see that the expression (46) coincides with the
expression (35). The same is true for the dispersions ppσ and

qpσ .

6. Conclusion

A new method that allows the Q-symbols of operators to be
obtained without resorting to the anti-normal-ordering
operation has been developed. In order to achieve this aim, an
explicit form of coherent states, in terms of which the Husimi
function is used, has been constructed. The proposed form-
alism is based on using the operators X̂ and P̂, which con-
stitute a Heisenberg algebra, and are a certain generalization
of the standard coordinate and momentum operators. We
hope that this approach can also be used to construct and
analyze other quasiprobability distributions. With the help of
this formalism the mean values of some operators are calcu-
lated. It is shown how the uncertainty relations are trans-
formed under scale transformations. The right-hand side of
these relations can greatly increase. This fact can be used to
study the tunnelling effect. We have also found, in an explicit
form, the density matrix for the scaling-transformed Husimi
functions of Fock states for a harmonic oscillator. These
stretched states can be used in the study of the quantum
tunnelling phenomenon.

Acknowledgments

The authors are sincerely grateful to Margarita A Man’ko and
Vladimir I Man’ko for the support of this work and many
fruitful discussions. This paper was written with scientific
cooperation between the Russian Academy of Sciences and
the Serbian Academy of Sciences and Arts in the framework
of ‘Fundamental investigations in the domain of quantum
information theory and quantum calculations and their
applications’. One author (VAA) is grateful to the Vinca
Institute for Nuclear Sciences (Beograd, Serbia) for hospi-
tality, and four authors (LDD, MDD, MDD and DMD) are
grateful to the Lebedev Physical Institute, Russian Academy
of Sciences, for hospitality. This work was supported in part
by the Ministry of Education and Science of Serbia (Contract
Nos. ON171031 and ON171028, LDD, MDD and MDD).

References

[1] Cahill K E and Glauber R J 1968 Phys. Rev. 176 1857–81
Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882–902

[2] Hillery M, O’Connell R F, Scully M O and Wigner E P 1984
Phys. Rep. 106 121–67

[3] Tatarskii V I 1983 Sov. Phys. Usp. 26 331–327
[4] Klimov A B and Chumakov S M 2009 A Group-Theoretical

Approach to Quantum Optics (Berlin: WILEY-VCH) p 334
[5] Moya-Cessa H and Knight P L 1993 Phys. Rev. A 48 2479–81
[6] Husimi K 1940 Proc. Phys. Math. Soc. Japan 22 264–314
[7] Kano Y J 1965 J. Math. Phys. 6 1913–5
[8] Wigner E P 1932 Phys. Rev. 40 749–59
[9] Glauber R J 1963 Phys. Rev. Lett. 10 84–87
[10] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277–9
[11] Mandel L and Wolf E 1995 Optical Coherence and Quantum

Optics (Cambridge: Cambridge University Press) p 896
[12] Scully M O and Zubairy M S 1997 Quantum Optics

(Cambridge: Cambridge University Press) p 510
[13] Schleich W P 2001 Quantum Optics in Phase Space (Berlin:

WILEY-VCH) p 750
[14] Andreev V A et al 2011 Theor. Math. Phys. 166 356–68
[15] Dodonov V V and Man’ko V I 1989 Invariants and Evolution

of Nonstationary Quantum Systems (Proc. Lebedev Physics
Institute vol 183) ed M A Markov (Commack, NY: Nova
Science)

[16] Landau L D and Lifshitz E M 1991 Quantum Mechanics (Non-
Relativistic Theory vol 3) (Oxford: Pergamon) p 540

[17] Dodonov V V, Kurmyshev E V and Manko V I 1980 Phys.
Lett. A 79 150–62

[18] Vysotskii V I, Vysotskyy M V and Adamenko S V 2012
ZhETF 114 243–58

[19] Vysotskii V I, Adamenko S V and Vysotskyy M V 2012
ZhETF 115 551–67

[20] Chernega V N 2012 arXiv:1303.5238v1 [quant-ph] 21
[21] Dodonov V V and Dodonov A V 2014 J. Russ. Laser Res. 35

39–46
[22] Dodonov V V and Dodonov A V 2014 Phys. Lett. A 378

1071–3
[23] Agarwal G S and Tara K 1993 Phys. Rev. A 47 3160–6
[24] Andreev V A et al 2011 Phys. Scr. T143 014003
[25] Feller W 1957 An Introduction to Probability Theory and its

Applications vol 1 (New York: Wiley) p 480

6

Phys. Scr. 90 (2015) 074023 V A Andreev et al

http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1070/PU1983v026n04ABEH004345
http://dx.doi.org/10.1070/PU1983v026n04ABEH004345
http://dx.doi.org/10.1070/PU1983v026n04ABEH004345
http://dx.doi.org/10.1103/PhysRevA.48.2479
http://dx.doi.org/10.1103/PhysRevA.48.2479
http://dx.doi.org/10.1103/PhysRevA.48.2479
http://dx.doi.org/10.1063/1.1704739
http://dx.doi.org/10.1063/1.1704739
http://dx.doi.org/10.1063/1.1704739
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1103/PhysRevLett.10.84
http://dx.doi.org/10.1103/PhysRevLett.10.84
http://dx.doi.org/10.1103/PhysRevLett.10.84
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.1007/s11232-011-0028-8
http://dx.doi.org/10.1007/s11232-011-0028-8
http://dx.doi.org/10.1007/s11232-011-0028-8
http://dx.doi.org/10.1016/0375-9601(80)90231-5
http://dx.doi.org/10.1016/0375-9601(80)90231-5
http://dx.doi.org/10.1016/0375-9601(80)90231-5
http://dx.doi.org/10.1134/s1063776112010189
http://dx.doi.org/10.1134/s1063776112010189
http://dx.doi.org/10.1134/s1063776112010189
http://dx.doi.org/10.1134/s1063776112080183
http://dx.doi.org/10.1134/s1063776112080183
http://dx.doi.org/10.1134/s1063776112080183
http://dx.doi.org/10.1007/s10946-014-9398-3
http://dx.doi.org/10.1007/s10946-014-9398-3
http://dx.doi.org/10.1007/s10946-014-9398-3
http://dx.doi.org/10.1007/s10946-014-9398-3
http://dx.doi.org/10.1016/j.physleta.2014.02.016
http://dx.doi.org/10.1016/j.physleta.2014.02.016
http://dx.doi.org/10.1016/j.physleta.2014.02.016
http://dx.doi.org/10.1016/j.physleta.2014.02.016
http://dx.doi.org/10.1103/PhysRevA.47.3160
http://dx.doi.org/10.1103/PhysRevA.47.3160
http://dx.doi.org/10.1103/PhysRevA.47.3160
http://dx.doi.org/10.1088/0031-8949/2011/T143/014003

	1. Introduction
	2. Husimi function and the mean value problem
	3. Deriving the Husimi symbols without antinormal ordering
	4. Evaluation of mean values and uncertainty relations
	5. Stretched fock states
	6. Conclusion
	Acknowledgments
	References



