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Motivation

In the last ~20 years, 
experimental evidence 
for the formation of a  
little fluid in Pb+Pb 
collisions at the LHC 
has largely relied on  
azimuthal correlations 
between  particles seen 
in detectors

CMS 1201.3158 

https://arxiv.org/pdf/1201.3158.pdf
https://arxiv.org/pdf/1201.3158.pdf
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Motivation

b V

Evidence is indirect : 

1. Azimuthal distribution 
of particles is not 
isotropic

2. This anisotropy is 
driven by pressure 
gradients within a fluid
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Motivation

Evidence is indirect : 

1. Azimuthal distribution 
of particles is not 
isotropic

2. This anisotropy is 
driven by pressure 
gradients within a fluid

b V

b = impact parameter
          important in this talk!
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Motivation

Here I want to report more direct evidence of local 
thermalization in Pb+Pb collisions, which does not 
involve directions of outgoing particles, but solely their 
momenta  
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Outline

1. Motivation

2. What we see in data 
variance of momentum per particle versus collision multiplicity

3. What we see in simulations

4. How we match theory and data 
fluctuations of impact parameter at fixed multiplicity are essential

5. Further predictions



Experiment

The inner detector of ATLAS sees charged particles and 
measures their momenta in Pb+Pb collisions at 5.02 TeV
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Analysis

1. Classify events according to the multiplicity of charged 
particles, Nch (centrality classification)

2. Measure the transverse momentum per charged particle 
[pt] in every event

3. Measure the variance of [pt] across collision events with 
same Nch, 

4. Subtract the trivial statistical fluctuation of [pt] due to 
finite multiplicity to isolate the dynamical variance, 
which I denote by  Var(pt|Nch)

In practice, 3. and 4. are done simultaneously by measuring a correlation, 
rather than a fluctuation
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Analysis

1. Classify events according to the multiplicity of charged 
particles, Nch (centrality classification)

2. Measure the transverse momentum per charged particle 
[pt] in every event

3. Measure the variance of [pt] fluctuations across collision 
events with same Nch

4. Subtract the trivial statistical fluctuation of [pt] due to 
finite multiplicity to isolate the dynamical variance, 
which I denote by  Var(pt|Nch)

In practice, 3. and 4. are done simultaneously by measuring a correlation, 
rather than a fluctuation
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Variance of [pt]
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ATLAS 2205.00039 
and ATLAS-CONF-2021-001 (Fig.2)

• The relative dynamical fluctuation of [pt] is small ~1% 
• Puzzling observation: steep fall over a narrow range of Nch

• I will show that this is naturally explained by hydrodynamics

2nd of the 2 
data sets  

I use

https://arxiv.org/abs/2205.00039
https://inspirehep.net/files/4ec69ffb771afdd184a54dc7f0efbfee
https://arxiv.org/abs/2205.00039
https://inspirehep.net/files/4ec69ffb771afdd184a54dc7f0efbfee


Variance of [pt]
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• Puzzling observation: steep fall over a narrow range of Nch

• I will show that this is naturally explained by hydrodynamics

2nd of the 2 
data sets  
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Variance of [pt]
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• The relative dynamical fluctuation of [pt] is small ~1% 
• Puzzling observation: steep fall over a narrow range of Nch

• I will show that this is a consequence of thermalization

2nd of the 2 
data sets  

I use



Hydrodynamic simulations
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• Hydro = standard modeling of heavy-ion collisions.  
assumes thermalization  

• We simulate Pb+Pb collisions at fixed b.   
In experiment, one knows Nch, not b, but 
In a simulation, b must be specified first, Nch is only known at the end  

• Hydro is deterministic. Collisions differ only by quantum 
fluctuations in initial conditions (from the Trento model)

• Viscous hydro code MUSIC
• We calculate Nch and [pt] in every event

https://github.com/MUSIC-fluid/MUSIC
https://github.com/MUSIC-fluid/MUSIC


Hydrodynamic simulations
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• Sizable multiplicity fluctuations, modest momentum 
fluctuations

• Strong correlation between Nch and [pt]

1 point = 1 collision
We simulate 1000 
collisions
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Origin of correlation
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Origin of correlation
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Origin of correlation
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Simulations with HIJING
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• HIJING is a widely used microscopic model of high-
energy nucleus-nucleus collisions from the early 1990s 
which  does not assume thermalization 

• We use it to test whether the correlation is specific to a 
thermalized system. 

Wang Gyulassy https://arxiv.org/abs/nucl-th/9502021

https://arxiv.org/abs/nucl-th/9502021
https://arxiv.org/abs/nucl-th/9502021


Simulations with HIJING
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• Very small correlation (~10 x smaller)
• Hence the correlation is a signature of thermalization

1 point = 1 collision
20000 collisions are 
shown



Next: find thermalization in data
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• Fluctuations of [pt] measured for fixed Nch, not fixed b.
• The clue:   Fixed Nch → Finite range of b. 

b V b V

• The variation of b gives a contribution to the variance 
of  [pt], which goes to 0  in ultracentral collisions.

Hotter
larger [pt]

Colder
smaller [pt]



Bayesian reconstruction of P(b|Nch)
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• First solve inverse problem:   
what is the  distribution of Nch at fixed b, P(Nch|b) ?  

• Then apply Bayes’ theorem  
P(b|Nch)P(Nch)= P(Nch|b)P(b)

Das Giacalone Monard  JYO https://arxiv.org/abs/1708.00081

https://arxiv.org/abs/1708.00081
https://arxiv.org/abs/1708.00081


22

We assume that  P(Nch|b) is Gaussian

Determining P(Nch|b) from P(Nch)
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We fit  P(Nch) as a sum of Gaussians
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Das Giacalone Monard  JYO https://arxiv.org/abs/1708.00081
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https://arxiv.org/abs/1708.00081
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• We reconstruct precisely the knee ≡ mean Nch at b=0
• Ultracentral collisions ≡ above the knee:   0.35% events 

Determining P(Nch|b) from P(Nch)
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Variance of [pt]
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The steep fall of the variance precisely occurs at the knee
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P(b|Nch) from Bayesian reconstruction
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P(b|Nch) from Bayesian reconstruction
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P(b|Nch) from Bayesian reconstruction
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P(b|Nch) from Bayesian reconstruction
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P(b|Nch) from Bayesian reconstruction
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P(b|Nch) from Bayesian reconstruction
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Understanding data on [pt] fluctuations
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Idea: Build a simple model for the distribution of [pt] at 
fixed b, and adjust parameters to these data. 
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Inspired by hydro + simplicity: assume a correlated  
2-dimensional Gaussian: 5 parameters (functions of b)

Parametrizing P(Nch,[pt]|b)
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Parametrizing P(Nch,[pt]|b)
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Almost constant experimentally! 
we assume it is independent of b and we only study 
the deviation from the mean : δpt≡[pt]-mean  
so that we don’t even need to know the mean. 

Mean value of [pt] at fixed b 
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We assume that it is a smooth function of the mean 
multiplicity, of the form 

σpt2(Ñch(0)/Ñch(b))α

 

Variance of  [pt] at fixed b 
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assumed independent of b for simplicity. 

Correlation coefficient r
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1. Integrate over b: P(Nch,δpt) = ∫P(Nch,δpt|b)P(b)db 

2. Conditional proba  P(δpt|Nch)= P(Nch,δpt)/P(Nch)  

3.  Var([pt]|Nch) is the squared width of P(δpt|Nch)  

4. We fit ATLAS data using σpt, α, r.

Fitting ATLAS data on Var([pt]|Nch)
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Fit results: P(Nch,δpt)

Gaussian 
distributions at 
fixed b
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Fit results: P(Nch,δpt)

1. 

At fixed Nch, two 
contributions to the 
width in δpt

fluctuations from 
the variation of b 
(several ellipses 
contribute) 
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Fit results: P(Nch,δpt)

2. fluctuations of δpt 

at fixed b and Nch 

(height of a single 
ellipse)

At fixed Nch, two 
contributions to the 
width in δpt
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Fit results: P(Nch,δpt)

Only this second 
term remains in 
ultracentral 
collisions 

2.

At fixed Nch, two 
contributions to the 
width in δpt
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Fit results: Var([pt]) versus Nch
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Fit results: Var([pt]) versus Nch

• Below the knee, half of the variance from variation of b
• This contribution gradually disappears around the knee
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Thermalization observed! 

The fit returns 
r=0.679
→ Strong correlation 
between [pt] and Nch 
at fixed b 
→ the system 
thermalizes
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Further predictions

Slight increase of 
<pt> in ultracentral 
collisions

Gardim Giacalone JYO 1909.11609

https://arxiv.org/abs/1909.11609
https://arxiv.org/abs/1909.11609
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[pt] fluctuations are not Gaussian
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Large skewness below the knee
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[pt] fluctuations are not Gaussian

Samanta Luzum JYO, 2306.xxxxx

Large kurtosis at the knee
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Conclusion

• Transverse momentum fluctuations in ultracentral 
collisions provide a new, direct probe of 
thermalization in ultrarelativistic nucleus-nucleus 
collisions. 

• For phenomenology, it is essential to know the 
distribution of the observable used as a centrality 
estimator (e.g. multiplicity), which is not always 
made public by large collaborations (e.g. CMS). 


