

Transverse momentum fluctuations in ultracentral Pb+Pb collisions at the LHC

Jean-Yves Ollitrault IPhT Saclay, France

Exploring Quark-Gluon Plasma through soft and hard probes SANU - Belgrade, Serbia May 29-31, 2023

https://arxiv.org/abs/2303.15323

with Rupam Samanta, Somadutta Bhatta, Jiangyong Jia, Matt Luzum

In the last ~20 years, experimental evidence for the formation of a little fluid in Pb+Pb collisions at the LHC has largely relied on azimuthal correlations between particles seen in detectors

CMS 1201.3158

Evidence is indirect :

- I. Azimuthal distribution of particles is not isotropic
- This anisotropy is driven by pressure gradients within a fluid

Evidence is indirect :

- Azimuthal distribution of particles is not isotropic
- This anisotropy is driven by pressure gradients within a fluid

b = impact parameter important in this talk!

Here I want to report more direct evidence of local thermalization in Pb+Pb collisions, which does not involve directions of outgoing particles, but solely their momenta

Outline

- I. Motivation
- 2. What we see in data variance of momentum per particle versus collision multiplicity
- 3. What we see in simulations
- 4. How we match theory and data fluctuations of impact parameter at fixed multiplicity are essential
- 5. Further predictions

The inner detector of ATLAS sees charged particles and measures their momenta in Pb+Pb collisions at 5.02 TeV

Analysis

I. Classify events according to the multiplicity of charged particles, N_{ch} (centrality classification)

0

Analysis

- I. Classify events according to the multiplicity of charged particles, N_{ch} (centrality classification)
- Measure the transverse momentum per charged particle
 [pt] in every event
- 3. Measure the variance of $[p_t]$ fluctuations across collision events with same N_{ch}
- Subtract the trivial statistical fluctuation of [pt] due to finite multiplicity to isolate the dynamical variance, which I denote by Var(pt|Nch)
- In practice, 3. and 4. are done simultaneously by measuring a correlation, rather than a fluctuation

- The relative dynamical fluctuation of [p_t] is small ~1%
- Puzzling observation: steep fall over a narrow range of N_{ch}

- The relative dynamical fluctuation of $[p_t]$ is small ~1%
- Puzzling observation: steep fall over a narrow range of N_{ch}
- I will show that this is a consequence of thermalization

Hydrodynamic simulations

- Hydro = standard modeling of heavy-ion collisions.
 assumes thermalization
- We simulate Pb+Pb collisions at fixed b.
 In experiment, one knows N_{ch}, not b, but
 In a simulation, b must be specified first, N_{ch} is only known at the end
- Hydro is deterministic. Collisions differ only by quantum fluctuations in initial conditions (from the Trento model)
- Viscous hydro code <u>MUSIC</u>
- We calculate N_{ch} and $[p_t]$ in every event

Hydrodynamic simulations

- Sizable multiplicity fluctuations, modest momentum fluctuations
- Strong correlation between N_{ch} and $[p_t]$

Origin of correlation

Origin of correlation

Origin of correlation

creation occurs.

Simulations with HIJING

- HIJING is a widely used microscopic model of highenergy nucleus-nucleus collisions from the early 1990s which does not assume thermalization
- We use it to test whether the correlation is specific to a thermalized system.

Wang Gyulassy <u>https://arxív.org/abs/nucl-th/9502021</u>

Simulations with HIJING

I point = I collision
20000 collisions are
shown

- Very small correlation (~10 x smaller)
- Hence the correlation is a signature of thermalization

Next: find thermalization in data

- Fluctuations of $[p_t]$ measured for fixed N_{ch} , not fixed b.
- The clue: Fixed $N_{ch} \rightarrow$ Finite range of b.

 The variation of b gives a contribution to the variance of [pt], which goes to 0 in ultracentral collisions.

Bayesian reconstruction of P(b|N_{ch})

- First solve inverse problem: what is the distribution of N_{ch} at fixed b, $P(N_{ch}|b)$?
- Then apply Bayes' theorem $P(b|N_{ch})P(N_{ch}) = P(N_{ch}|b)P(b)$

Das Giacalone Monard JYO <u>https://arxiv.org/abs/1708.00081</u>

Determining $P(N_{ch}|b)$ from $P(N_{ch})$

Determining $P(N_{ch}|b)$ from $P(N_{ch})$

Das Giacalone Monard JYO <u>https://arxiv.org/abs/1708.00081</u>

Determining $P(N_{ch}|b)$ from $P(N_{ch})$

- We reconstruct precisely the knee = mean N_{ch} at b=0
- Ultracentral collisions = above the knee: 0.35% events

The steep fall of the variance precisely occurs at the knee

Understanding data on [pt] fluctuations

Idea: Build a simple model for the distribution of $[p_t]$ at fixed b, and adjust parameters to these data.

Parametrizing P(N_{ch},[p_t]|b)

Inspired by hydro + simplicity: assume a correlated 2-dimensional Gaussian: 5 parameters (functions of b)

Parametrizing P(N_{ch},[p_t]|b)

Mean value of $[p_t]$ at fixed b

Almost constant experimentally! we assume it is independent of b and we only study the deviation from the mean : $\delta p_t = [p_t]$ -mean so that we don't even need to know the mean.

Variance of [pt] at fixed b

We assume that it is a smooth function of the mean multiplicity, of the form

 $\sigma_{pt}^2(\tilde{N}_{ch}(0)/\tilde{N}_{ch}(b))^{\alpha}$

Correlation coefficient r

assumed independent of **b** for simplicity.

Fitting ATLAS data on Var([pt]|Nch)

- I. Integrate over b: $P(N_{ch}, \delta p_t) = \int P(N_{ch}, \delta p_t | b) P(b) db$
- 2. Conditional proba $P(\delta p_t | N_{ch}) = P(N_{ch}, \delta p_t)/P(N_{ch})$
- 3. $Var([p_t]|N_{ch})$ is the squared width of $P(\delta p_t|N_{ch})$

4. We fit ATLAS data using σ_{pt} , α , r.

At fixed N_{ch} , two contributions to the width in δp_t

. fluctuations from the variation of b (several ellipses contribute)

At fixed N_{ch} , two contributions to the width in δp_t

2. Only this second term remains in ultracentral collisions

Fit results:Var([pt]) versus Nch

Our simple model naturally explains the observed fall in ultracentral collisions

Fit results:Var([pt]) versus Nch

- Below the knee, half of the variance from variation of b
- This contribution gradually disappears around the knee

Thermalization observed!

Further predictions

Gardím Gíacalone JYO 1909.11609

[pt] fluctuations are not Gaussian

Samanta Luzum JYO, 2306.XXXX

[pt] fluctuations are not Gaussian

Samanta Luzum JYO, 2306.XXXX

Conclusion

- Transverse momentum fluctuations in ultracentral collisions provide a new, direct probe of thermalization in ultrarelativistic nucleus-nucleus collisions.
- For phenomenology, it is essential to know the distribution of the observable used as a centrality estimator (e.g. multiplicity), which is not always made public by large collaborations (e.g. CMS).