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1) Elliptic flow & motivation
– Motivation and definition

2) Input, test & model validation
– Input data (min. bias AMPT)
– Optimalization of the NN
– Test with noise, epoch

3) Results on v2 by ML (DNN)
– Dependence on centrality, c.m. 

energy, PID, and pT

Conclusions: 
→ Can we estimate v2 ex machina?

Outline 
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Motivation & definitions 
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Primordial matter in heavy-ion collisions
● Quark-Gluon Plasma (QGP) research
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Primordial matter in heavy-ion collisions
● QGP in experimental vs theory points

– By colliding heavy-ions we can form small 
drop of the hot & dense primordial matter

– No direct observations, just signatures: 
jet-quenching, correlations, collective 
effects, anisotropic flow…

– Need a complex description, including 
QCD phenomenology, hydrodynamics, 
(non-equilibrium) thermodynamics
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Elliptic flow (v2) in heavy-ion collisions
● Experimental point:

– Elliptic flow describes the azimuthal 
momentum space anisotropy of particle 
emission for a non-central heavy-ion 
collision.
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Elliptic flow (v2) in heavy-ion collisions
● Experimental point:

– Elliptic flow describes the azimuthal 
momentum space anisotropy of particle 
emission for a non-central heavy-ion 
collision.

– The 2nd harmonic coefficient of the Fourier 
expansion of azimuthal momentum 
distribution:

– The                                  directly 
reflects the initial spatial anisotropy of the 
nuclear overlap region in the transverse 
plane.
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… and if the situation of calculating the 
v2 is getting too problematic...
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Motivation
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Motivation
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Motivation

v2
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Motivation

v2

elliptic flow
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Motivation

v2

elliptic flow

intelligence
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The input: MC-generated collisions 
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The AMPT model for Pb-Pb collisions
● A Multi-phase transport model (AMPT): MC event generator for simulating p-A 

and A-A collisions from RHIC to LHC energies.
– Fluctuating initial conditions: Initialization of collision is done by obtaining the 

spatial and momentum distributions of the hard minijet partons and soft string 
excitations from the HIJING model. The inbuilt Glauber model is used to calculate and 
convert the cross-section of the produced mini-jets from pp to AA.

– Zhang’s parton cascade (ZPC) model is used to perform the partonic interactions 
and parton cascade which currently includes the two-body scatterings with cross-sections 
obtained from the pQCD with screening masses.

– Hadronization mechanism: Lund string fragmentation model is used to recombine 
the partons with their parent strings and then the strings are converted to hadrons, 
whereas, in the string melting mode the transported partons are hadronized using a 
quark coalescence mechanism.

– Hadron cascade: scattering among the produced hadrons are performed using a 
relativistic transport model (ART) by meson-meson, meson-baryon and baryon-baryon 
interactions.
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Building up the Machine Learning:
input, test, and model validation 
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Building up the ML structure
Machine Learning Basics
– Neuron: Biological 
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Building up the ML structure
Machine Learning Basics
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Building up the ML structure
Machine Learning Basics
– ANN: Artificial Neural Network
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Building up the ML structure
Example: DNN with 2 layers
– Input: Takes the features as inputs
– Hidden layers: Connects to each neuron 

through different weights
– Output: Gives the result as a number or 

class
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Building up the ML structure
Math & algorithms behind
– Weights dictate the importance of an input 

→ more important features get more weights
– Activation function: mathematical function 

that guides the outcome at each node         
→ Standardize the values

– Cost function: Evaluates the accuracy 
between machine prediction and true value

– Optimizer: Method (or algorithm) that 
minimizes the cost function by automatically 
updating the weights
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Building up the ML structure
Estimation of elliptic flow using DNN
– Elliptic flow → Event property
– Inputs → Track properties
– (η-ϕ) space is the primary input space
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Building up the ML structure
Estimation of elliptic flow using DNN
– Elliptic flow → Event property
– Inputs → Track properties
– (η-ϕ) space is the primary input space
– Three layers having different weights: pT, 

mass and log(sNN/s0) weighted layers 
serve as the secondary input space
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Building up the ML structure
Input “pictures” for DNN
– Each space has 32 × 32 pixels (grids)
– Total number of pixel points =  

32 × 32 × 3 = 3072 for each event
DNN with the following architecture
– Input Layer: 128 Nodes
– Three hidden layers: 256 Nodes each
– Final layer : 1 node (v2)
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Building up the ML structure
Activation, optimalization, validation
– Input and hidden layers have ReLu 

Activation
– Output layer has Linear activation
– Optimizer: adam , Loss function: mse
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Optimalizing the ML structure
Activation, optimalization, validation
– Input and hidden layers have ReLu 

Activation
– Output layer has Linear activation
– Optimizer: adam , Loss function: mse
– Epoch: 30, Batch Size: 32x32
– Training: 108 Events (~25 GB)
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Testing the ML structure
Activation, optimalization, validation
– Input and hidden layers have ReLu 

Activation
– Output layer has Linear activation
– Optimizer: adam , Loss function: mse
– Epoch: 30, Batch Size: 32x32
– Training: 108 Events (~25 GB)
– Validation: 104 Events
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Testing the ML structure
Activation, optimalization, validation
– Input and hidden layers have ReLu 

Activation
– Output layer has Linear activation
– Optimizer: adam , Loss function: mse
– Epoch: 30, Batch Size: 32x32
– Training: 108 Events (~25 GB)
– Validation: 104 Events
– Error: effect of uncorrelated noise
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v2 ex machina
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Results on v2 vs centrality
Results on the training data & sets 
– AMPT simulation: 5.02 TeV Pb-Pb

→ works well [10%:60%] centrality
→ low statistics/v2 values out of this
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Results on v2 vs c.m. energy
Results on the training data & sets 
– AMPT simulation: 5.02 TeV Pb-Pb

→ works well [10%:60%] centrality
→ low statistics/v2 values out of this

– DNN simulation: same parameters
→ Follows well the AMPT
→ Even including noise w=0.5 

– Predictions for other energies
→ similar trends as on the training
→ AMPT tune for 200 GeV is different
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Results on v2 vs pT
Results on the training data & sets 
– AMPT simulation: 5.02 TeV Pb-Pb

→ works well at 30%-40% centrality
→ low statistics at high pT
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● Centrality
The largest in case 
30%-40%  mid-central

● Collision energy
The higher the energy 
higher effect.

● System size
AuAu, PbPb, XeXe

● DNN
Follows well the trends 
→ scaling is encoded.
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Scaling properties with PID 
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Scaling properties with PID 
● Particle ID (PID) 

The highest crossing 
point in pT appears at 
the highest energies in 
case 10%-40%.
The measured values 
are larger than the 
AMPT 

● DNN
Follows well the trends 
in the training AMPT 
simulations → scaling is 
encoded.

Crossingpoint
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Scaling properties are in the DNN 
● Centrality

The largest in 
case 30%-40%  
mid-central
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Scaling properties are in the DNN 
● Centrality

The largest in 
case 30%-40%  
mid-central

● Collision energy
The higher the 
energy higher 
effect.

● DNN
Follows well the 
trends → scaling 
is encoded.
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Results at higher pT 
● AMPT vs Data

→ Does not fit well 
above than few pT 
Best at 30%-40%  
mid-central.
→ Need for more 
statistics

● AMPT vs DNN
→ DNN follows well  
the AMPT at any 
energy & centrality.

● DNN
Follows well AMPT but 
NOT the high pT data 
→ need to improve!
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● Is it possible to estimate the elliptic flow by ML?
– Get best Min. Bias. Monte Carlo simulation data and train 

the well-designed DNN system...  
→ More sophisticated NN, the less epoch needs
→ Un-correlated noise can be even w=1 
→ AMPT & DNN correlates well for all centrality
→ Best correlation is for the highest statistic
→ Energy scaling is well preserved (non-linear) 
→ The v2(pT) is also preserved with PID & NCQ

Conclusions 
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● Is it possible to estimate the elliptic flow by ML?
– Get best Min. Bias. Monte Carlo simulation data and train 

the well-designed DNN system...  
→ More sophisticated NN, the less epoch needs
→ Un-correlated noise can be even w=1 
→ AMPT & DNN correlates well for all centrality
→ Best correlation is for the highest statistic
→ Energy scaling is well preserved (non-linear) 
→ The v2(pT) is also preserved with PID & NCQ

● What is missing...
– Test of correlated noise (detector setup, etc)
– Train with real data from ALICE

Conclusions 
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Thank You!
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BACKUP
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Testing the ML structure
Activation, optimalization, validation
– Input and hidden layers have ReLu 

Activation
– Output layer has Linear activation
– Optimizer: adam , Loss function: mse
– Epoch: 30, Batch Size: 32x32
– Training: 108 Events (~25 GB)
– Validation: 104 Events
– Error: effect of uncorrelated noise
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Scaling properties are in the DNN 
● Centrality

The largest in case 
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Preliminary: results at higher pT 
● AMPT vs Data

→ Does not fit well 
above than few pT 
Best at 30%-40%  
mid-central.
→ Need for more 
statistics

● AMPT vs DNN
→ DNN follows well  
the AMPT at any 
energy & centrality.

● DNN
Follows well AMPT but 
NOT the high pT data 
→ need to improve!
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