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Introduction

Low-p, observables are used to explore the bulk properties of the QGP created in
heavy-ion collisions.

High-p, probes also become powerful tomography tools; Sensitive to global QGP
features, e.g., different temperature profiles or initial conditions.

The near perfect fluidity of QGP has been investigated extensively in heavy-ion
collision experiments.

n/s is well constrained by Bayesian analysis in low-p, sector in the temperature
range 7. S T < 1.5T. and weakly constrained at larger temperatures.

We try to put constraints on 77/s by analyzing high-p, observables using the
generalized DREENA-A.



n/s of the medium : Soft-to-hard boundary

* QGP is expected to behave as weakly interacting gas: Weakly coupled
* Fluid dynamics predicts the #/s to be very low: Strongly coupled

* QGP may behave as perfect fluid near T, (soft regime) and #/s may increase at high
temperature (hard regime).

* Testing the soft-to-hard hypothesis is difficult: Anisotropy is weakly affected by the
n/s at high temperature.

» High-p, data/theory can serve as complementary tool.



High-p, energy loss : Generalized DREENA-A

* Dynamical Radiative and Elastic ENergy loss Approach

O Based on finite temperature field theory and generalized HTL approach
M. Djordjevic, PRC 74, 064907, (2000) ; PRC 80, 064909 (2009), M. Djordjevic and U. Heinz, PRL 101, 022302

O Finite size dynamical QCD medium is considered

O Takes into account both radiative and collisional energy losses
O Generalized to the case of magnetic mass and running coupling
O No fitting parameter in the theory

* Takes arbitrary temperature profile as input.

D. Zigic, 1. Salom, J. Auvinen, P. Huovinen, M. Djordjevic Front.in Phys. 10 (2022) 957019

* Optimized to incorporate any arbitrary event-by-event fluctuating temperature profile.

D. Zigic, J. Auvinen, I. Salom, M. Djordjevic, P. Huovinen Phys.Rev.C 106 (2022) 4, 044909

* DREENA-A is available on http:/github.com/DusanZigic/DREENA-A (Details in talk by Dusan Zigic, next

session)


http://github.com/DusanZigic/DREENA-A

Phenomenological approach

Three different (#/s)(T) parametrizations have been considered.

Parameters are adjusted to reproduce low-p, data.

Temperature profile is generated for each case.
High-p, predictions found using generalized DREENA-A.
Compared with high-p, data.



Modeling the bulk evolution

Initial entropy profiles are generated using TRENTo model.

10* events for Pb+Pb (s = 5.02 TeV) and Au+Au (s = 200 GeV) collisions.

Events are sorted in centrality classes.

Initial free streaming is not preferred by high-p, data.
S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, Phys. Rev. C 105 (2022) 2, Lo21901

Onset time for hydrodynamics: 7, = 1fm.
S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, Phys. Rev. C 105 (2022) 2, Lo219g01

(2+1)-dimensional fluid dynamical model (VISHNew) used to simulate the medium
evolution.



Temperature dependence of 77/ s

(W/S)mina I'< Tca
(n/s)(T) = {

T
: _ _(n/s)
1/5)min + (n/s)slope(T T.) - TICrv, T >T

C

Nature: Nature Phys. 15, no. 11, 1113-1117 (2019)

LHHQ: Phys. Rev. Lett. 100, 212302 (2011)
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O Pion, kaon, proton multiplicities and v,{4} are reproduced by varying the TRENTo

normalization factor for three »/s parametrizations.



Results

BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. D]ord]ewc and M. Djordjevic arXiv:2305.11313
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Average jet perceived temperature

BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordjevic arXiv:2305.11318
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Theoretical approach:

Transport coefficient from dynamical energy loss formalism
BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordjevic arXiv:2305.11318

Transport coefficient (g) = Squared average transverse momentum exchange between the medium
and the fast parton per unit length

Interaction between the parton and medium is characterized by the HTL resummed elastic collision
rate:

drel nf 3 asz
d°q 6  q°q°+ug
After including running coupling and finite magnetic mass:
dr,, C —
2el _ A Ta(ET) 2 ﬂEz /42M 2
dq 7 (q° + pp)(q” + pip)
In fluid rest frame:
6ET + i 6ET + i
o (oET ., I, A i In e 1 In >
g=| dqq° = Cul’
d? _2 ET
0 q (11 nf) In(=)




n/s from the transport coefficient

BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordjevic arXiv:2305.11318

In the limit ET — oo:

Agr 24m]A n6F o
g=1=C (1 —xi,.)T
=2, W)

&
I+ = 4nT? - , .
E(T) = > A W = Lambert’s W function, xy,> = p,,/

g is weakly dependent on jet energy E.
In weakly coupled limit:
nls ~ 1.25T°/§
Phys. Rev. Lett. 99 192301 (2007), Phys. Rev. D 104, Lo71501 (2021)
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n/s from the transport coeflicient

BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordjevic arXiv:2305.11313

g quantifies the parton coupling

strength in the medium

g/T> must rise rapidly near T
from above.
Our formalism valid in weakly

coupled regime.

T°/G and /s should agree in
the weak coupling regime.

Soft-to-hard boundary
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n/s from the transport coefficient

BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordjevic arXiv:2305.11318

* g/ T> shows expected behavior.

* Enhanced quenching near

* n/s is surprisingly close to

the constraints from Bayesian

analysis.
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n/s from the transport coefficient

BK, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordjevic arXiv:2305.11318
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Conclusion

*  We use generalized DREENA-A to compute high-p, energy loss.

* In the phenomenological approach:
O Three different (1/s)(T) parametrizations have been considered.

O The predictions from the generalized DREENA-A for three /s scenarios lead to plots that are almost
indistinguishable.

O The difference in the average jet-perceived temperature for the three cases is less than 2%.

O High-p, observables are not sensitive to such small temperature difference.
* In the theoretical approach:

O Transport coefficient and jet quenching strength are calculated from the dynamical energy loss formalism.

O 5/s shows surprisingly good agreement all the way to T. with constraints extracted from existing Bayesian
analyses. Provides much smaller uncertainties at high temperature.

O Intriguing hypothesis: quasiparticle picture is consistent at the entire temperature range.

O No guidance on locating soft-to-hard boundary.
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‘Thank you for your attention



» Mass of light quark M = u./6
* Mass of charm and bottom quark 1.2 GeV and 4.75 GeV

» Gluonmass m, = pg/2

* iy pgp = 0.6
O Constant 7/s (0.15 for Pb+Pb and 0.12 for Au+Au collision)

O Nature: (7/8)min = O°1’(’7/S)slope = 1.11,(n/s)cry = — 0.48

O LHHQ: (7/8)min = 0.04.01/5)g10pe = 3-30.(1/5)¢ry = 0



Modeling the bulk evolution

 Particlization is performed using Cooper-Frye prescription at isothermal space time
hypersurface at 151 MeV.

» UrQMD is used to simulate microscopic dynamics of hadronic system.

* Bulk viscosity parametrized as

@D =~ D ma
| >
Dyidth

with (¢/s),,.. = 0.03, (C/5),,.,, = 0.022 and T}, = 0.183GeV.

* We use lattice QCD based EoS from HotQCD (high temperature) + HRG (low
temperature) EoS.
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