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Our project

To get both hydrodynamic IS and initial hard partons from preferrably the same initial state,
make hydrodynamic and jet parts talk to each other, add hadronization scheme and jet finding.
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Time-like parton shower

Monte Carlo simulation of DGLAP equations for a parton shower between virtuality scales Q↑
(from Born process in hard scattering) and Q↓ = 0.6 GeV.

Sa(Qa↑ ,Qa)

(
αs(F(χ,Q2))

2π
Pa→b,c(χ)

)
= p(Qa, χ) .

Vacuum shower developed
by Martin Rohrmoser
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Time-like parton shower + spacetime picture
Monte Carlo simulation of DGLAP equations for a parton shower between virtuality scales Q↑
(from Born process in hard scattering) and Q↓ = 0.6 GeV.

On top of that:
The time evolution is split into timesteps (ideal for merging with hydrodynamic medium evolution)
Parton splitting (for high-Q2 partons) happens with a probability according to mean life times
between the splittings ∆t = E/Q2.
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+medium-induced radiation
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Medium-induced radiation: single (incoherent) radiation process

Basic idea: Gunion, Bertsch ’82

Extension for heavy quark projectile and dynamical light
quarks:
Aichelin, Gossiaux, Gousset, Phys. Rev. D89, 074018 (2014):

In the region of small x, the matrix elements from QCD can be approximated by so-called scalar
QCDwhich at high energy leads to a factorized formula for the total cross section of the radiation
process: dσQq→Qqg

dxd2kT d2lT
=

dσel

d2lT
Pg(x,kT , lT )θ(∆), where

Pg(x, k⃗T , l⃗T ;M) =
CAαs

π2
1− x

x

(
k⃗T

k⃗T
2
+ x2M2

− k⃗T − l⃗T
(k⃗T − l⃗T )2 + x2M2

)2

,

Allows for finite
quark/gluon masses
→ heavy quark jets
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Medium-induced radiation: single (incoherent) radiation process

10−4

10−3

10−2

10−1

100

101

(1
/N

j
)

d
N

tr
ia

l
g

/d
ω

[1
/G

eV
]

Before LPM Evolution

kT 6= 0, mq →∞
kT 6= 0, mq = 0

kT = 0, mq →∞
GB ∼ ω−1

100 101

ω [GeV]

10−2

10−1

100

R
at

io
to

G
B

kinematic efects

Setup:

Medium: T = 400 MeV
length L = 4 fm
αs = 0.3

projectile:
E = 100 GeV
low virtuality

At most energies, the radiation spectrum behaves as ω−1.
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Coherent radiation

For the multiple scatterings in medium,
one has to take into account coherence
effects: Landau-Pomeranchuk-Migdal
(LPM) effect in QED, or BDMPS-Z in
QCD.

For low-Q2 partons: at each timestep, an elastic scattering and/or a radiation of pre-formed gluon
happens with a probability Rel∆t, Rinel∆t respectively.
Each parton can generate arbitrary number of pre-formed gluons (∝blob).

We adopted a faithful implementation of the BDMPS-Z by Zapp, Stachel, Wiedemann, JHEP 07
(2011), 118
see the next slide
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The Monte Carlo algorithm for coherent radiation block
Trial incoherent gluon radiation

Gluon phase accumulation

∆ϕ =
k2

T
ω·h̄c ∆t

Elastic scatterings

each scattering increments Ns = Ns +1

Phase accumulated: ϕ = ϕc
Still in medium?

Yes No

Form with probability 1/Ns

Discard gluon, revert the recoil

add the recoil momentum lT back to the projectile

Yes No

Add the gluon
as radiated

Discard gluon, revert the recoil

add the recoil momentum lT back to the projectile
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Reproducing BDMS limit
A simplified setup a-là Zapp, Stachel, Wiedemann, JHEP 07 (2011), 118

100 101 102

ω [GeV]

10−3

10−2

10−1

100

101

d
I
/d
ω

initial kT = 0; no phase space restrictions

LPM

N=1

BH

L=1 fm

L=2 fm

no LPM

ω−2 (N=1)

ω−3/2(LPM)
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A simplified radiaiton seed,
essentially 1/ω

projectile: E = 100 GeV quark,
medium: box L = 1 fm and
Rel = Rinel = 0.1 fm.

change in regime for ω ·dI/dω from
1/
√

ω to 1/ω happens at ω = ωc,

where ωc ≈ q̂L2

2ϕch̄ . With the present

settings, ωc ≈ 3.4 GeV for L = 1 fm.

Also, by setting ϕc = 0 we reproduce
the incoherent limit 1/ω.

The algorithm behaves as we expect it to.
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Reproducing BDMS limit *with full GB seed*

dσel

d2lT
→ 8α2

s

9(l⃗T
2
+µ2)2

k+ conservation is used in
BDMS calculation,

we explore two other
choices:

energy conservation

energy reduction
(energy gain by the
medium parton is
subtracted from the
projectile gluon)
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Reproducing BDMS limit *with full GB seed*
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αs = 0.3
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E = 100 GeV
low virtuality

scattering centers with infinite mass,
initial kT = 0,
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phase accumulation:
∆φ = (2PQ · k/EQ)∆t/h̄c

BDMS curve:

dNg/dω ∝ αs
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1
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A good reproduction of ω−3/2 behaviour in the middle of ω range.
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... and corresponding dN/dkT (transverse momentum) and dN/dNs (number of coherent elastic
interactions) distributions
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Right panel: in k+ conservation an denergy conservation scenarios, most of the gluons accumulate
several coherent elastic kicks in order to become formed. Not the case for the energy reduction
scenario: only few kicks are needed.
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Howto accumulate the formation phase?

It looks like different choices exist in the
literature:

∆φ =
k2

T
ω

∆t
(used in JEWEL)

∆φ =
m2

g+k2
T

ω
∆t

(to smhw include the gluon mass)

∆φ = 2P·k
E ∆t

(a more generic formula)

Iurii Karpenko, Jets and medium evolution in Pb-Pb collisions at the LHC energies from ... 13/18



Effects of phase accumulation
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Setup:

Medium: T = 400 MeV
length L = 4 fm
αs = 0.3
projectile:
E = 100 GeV
low virtuality

scattering centers with infinite mass,
eikonal limit: PQ does not change
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Relaxing the zero-kT limit enhances the radiation: gluons are formed faster.
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... and corresponding dN/dkT and dN/dNs distributions
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non-zero initial kT makes it easier for the pre-formed gluons to accumulate their formation phase
→ fewer coherent elastic kicks are needed.
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A more realistic case: scattering off maseless medium partons
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The blue curve corresponds to the most realistic scenario (or at least we think so), and it exhibits a
nice ω−3/2 behaviour but it is a non-trivial interplay of different features plugged in!
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... and corresponding dN/dkT and dN/dNs distributions
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Summary

We’ve constructed a Monte Carlo implementation of the coherent radiative enegry loss in
BDMPS-Z formalism, based on an extension of the Gunion-Bertsch model to massive
quarks/gluons.

In a BDMS-mimicking setup, we reproduce the ω−3/2 behaviour.

In the transition towards more realistic setup, details and choices made in the algorithm seem to
be important

I guess the reason is that there is no clear separation of scales:
E ≫ ω ≫ kT in theory, but in practice they may and do overlap.

Outlook:
Run the jet energy loss model over a realistic medium background (vHLLE, already in progress),
compute basic observables, look at the effects of medium response.
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