Measuring open/hidden charm at SPS energy in the NA60+ experiment

E. Scomparin – INFN Torino (Italy)

EXPLORING QUARK-GLUON PLASMA THROUGH SOFT AND HARD PROBES

MAY 29-31, 2023

BELGRADE (SERBIA)

Introduction

- □ Open charm and charmonia in nuclear collisions → probe QGP
- Extensive information available at collider energy
- □ At fixed target energies

□ Few results on open charm production at top SPS energy
 → Indirect measurement from NA60 (IMR dilepton spectrum)
 → Upper limit on D⁰ by NA49
 □ Manu results on charmenia enducation SPS energy > 1/w w

□ Many results on charmonia, only at top SPS energy \rightarrow J/ ψ , ψ (2S)

□ Is it meaningful/relevant to revive these studies and extend them to lower energy ?

□ An experiment is being proposed with this aim \rightarrow NA60+ at CERN SPS (also focuses on electromagnetic probes!)

It is crucial to sharpen the physics program in this area, your feedback is important!

A new experiment at the CERN SPS

E. Scomparin – INFN Torino

Open charm in AA collisions – fixed target

QGP transport properties

Charm diffusion coefficient depends on the medium temperature, larger in the hadronic phase

Temperatures closer to T_{PC} can be explored
 Hadronic phase is a large part of the collision evolution

- \rightarrow sensitivity to hadronic interactions
- \rightarrow input for precision measurements at LHC

Charm thermalization

- Impact on charm of a shorter-lived medium can be explored
 - □ Current measurements on HF-decay electron v_2 at RHIC ($\sqrt{s_{NN}}$ = 39 and 62 GeV/c) show small v_2 wrt 200 GeV
 - \rightarrow not conclusive on v₂>0

STAR, PRC 95 (2017) 034907

Prino, Rapp, JPG43 (2016)

093002

Open charm in AA collisions – fixed target

Hadronization mechanisms

□ Strange/non-strange meson ratio (D_s/D) □ D_s/D enhancement expected in A-A collisions → recombination in the strangeness rich QGP

□ Baryon/meson ratios (Λ_c/D)
 □ Expected to be enhanced in A-A

 → hadronisation via coalescence

 □ Interesting also in p-A since Λ_c/D⁰ in

 pp (p-Pb) at LHC is higher than in e⁺e⁻

ALICE, PRL127 (2021) 202301

STAR, PRL 127

(2021) 092301

ALICE, PLB827

(2022) 136986

Total charm cross section

Limited measurements so far (NA60,NA49) because of low yields
 Precise measurement

- \rightarrow reconstruct mesons and baryons ground states
- Ideal reference for charmonia

Open charm pA collisions: fixed target

Nuclear PDFs via D-meson production in p-A

□ Perform measurements with various nuclear targets to access the A-dependence of nPDF

 \Box NA60+ offers a unique opportunity to investigate the large x_{Bi} region (study ratio to pA/pBe) \rightarrow EMC and anti-shadowing effects, 0.1<x_{Bi}<0.3 at Q2~10-40 GeV2

Lourenco, Wohri, Phys.Rept.433 (2006) 127

E. Scomparin – INFN Torino

Towards a precise measurement of open charm at SPS energy

A measurement of hadronic decays is required

	Mass	сτ	Decay	BR
	MeV)	(µm)		
D^0	1865	123	K⁻π⁺	3.95%
D^+	1869	312	$K^{-}\pi^{+}\pi^{+}$	9.38%
D_{s}^+	1968	147	$\phi\pi^{^+}$	2.24%
* +	2205	60	pK ⁻ π ⁺	6.28%
Λ_{c}	2285	60	рк _s Λπ ⁺	1.30%

D-meson performance studies

Fast simulation for central Pb-Pb collisions:

 \Box D-meson signal simulation: p_T and y distributions from POWHEG-BOX+PYTHIA

 \Box Combinatorial background: dN/dp_T and dN/dy of p, K and p from NA49

□ Parametrized simulation of VT detector resolution + track reconstruction with Kalman filter

Reconstruct D-meson decay vertex from decay tracks

Geometrical selections based on displaced decay vertex topology

E. Scomparin – INFN Torino

Charm hadrons: performance plots

□ With 10¹¹ minimum bias Pb-Pb collisions (1 month of data taking)
 □ More than 3·10⁶ reconstructed D⁰ in central Pb-Pb collisions at √s_{NN}=17.3 GeV
 □ Allows for differential studies of yield and v₂ vs. p_T, y and centrality
 □ D⁰ accessible also at lower collision energies with statistical precision at the percent level
 □ Measurement of D_s yield feasible with statistical precision of few percent
 □ A_c baryon also accessible, possible improvement using timing layers under study

 $D^0 \rightarrow K\pi$

 $D_s^+ \rightarrow \Phi \pi \rightarrow KK\pi$

Open/hidden charm in the NA60+ experiment ______Belgrade May 31, 2023 $\Lambda_{c}^{+} \rightarrow \mathsf{D}\mathsf{K}\pi$

Charmonia: high vs low \sqrt{s}

(Final state) CNM effects: negligible, extremely short crossing time $\tau = L/(\beta_z \gamma) \sim 7 \ 10^{-5} \text{ fm/c} (\gamma \sim 3)$ $\tau = L/(\beta_z \gamma) \sim 4 \ 10^{-2} \text{ fm/c} (\gamma \sim -3)$

Fixed target

Hot matter effects: suppression effects (if existing) dominate

> Initial state effects: moderate anti-shadowing $x \sim 10^{-1} (y=0)$

(Final state) CNM effects: break-up in nuclear matter can be sizeable $\tau = L/(\beta_z \gamma) \sim 0.5 \text{ fm/c}(y=0)$

J/ψ suppression: Pb-Pb at top SPS energy

□ Contrary to open charm, accurate studies were performed at \sqrt{s} =17.3 GeV (NA50, NA60)

 $\hfill\Box$ J/ ψ yields normalized to Drell-Yan reference

QGP-induced suppression evaluated with respect to a CNM reference obtained with systematic p-A studies

~30-40% anomalous suppression effect possibly due to disappearance of feed-downfrom χ_c and $\psi(2S)$

□ p-A
 □ Shadowing effects are moderate
 □ Dominated by nuclear absorption
 □ Strong √s-dependence
 → CNM-induced suppression may

become the dominant effect at low energy

Charmonia below top SPS energy

Track matching: measure muon kinematics before multiple scattering and energy loss

 \Box J/ ψ and ψ (2S) in the $\mu^+\mu^-$ decay channel

 $\label{eq:conversion} \begin{array}{l} \square \ \chi_c \to J/\psi \ \gamma, \ \text{with} \ \gamma \ \text{measured} \\ \text{via conversion in a lepton pair} \\ \text{in the vertex telescope} \end{array}$

Charmonia below top SPS energy

Quarkonium production not studied below top SPS energies!

Perform an energy scan in $E_{lab} = 20 - 158 \text{ GeV}$

Decreasing √s:
 Onset of χ_c and ψ(2S) melting
 → to be correlated to T measurement via

thermal dimuons

Pb-Pb collisions: expected statistics

□ With $I_{beam} \sim 10^6$ Pb/s, 7.5 mm Pb target (8.5 g cm⁻²) and 1 month of data taking → $L_{int} \sim 24$ nb⁻¹ NA60+ can aim at □ ~O(10⁴) J/ ψ at 50 GeV □ ~O(10⁵) J/ ψ at 158 GeV

□ N.B.: a factor 3 overall suppression (CNM + QGP) is assumed in these estimates

p-A collisions: performance

Assume $\alpha_{J/\psi}^{pA} = 0.93$ (as measured at $E_{lab} = 400$ GeV) A possible choice: total thickness 8.3 g cm⁻²

Α	Ве	Al	Cu	In	W	Pb	U
Thickness (cm)	1.2	0.	0.3	0.	0.	0.3	0.

□ 3 nuclear species □ Optimize lever arm of the fit to get σ_{pp}

□ With 5 x 10¹³ protons on target the expected statistics in pA is
 □ ~8000 J/ψ at 50 GeV
 □ ~60000 J/ψ at 150 GeV

NA60+, R_{AA} estimate

 \rightarrow Precise evaluation of anomalous suppression within reach even at low energy

N.B.: statistical uncertainties only Assume $\alpha_{J/\psi}^{pA} = 0.93$ in p-A

NA60+, significance of suppression signal

N.B.: statistical uncertainties only

□ 10% anomalous suppression signal detectable at 3σ for E_{lab} >100 AGeV ($\sqrt{s_{NN}}$ =13.8 GeV) □ 20% anomalous suppression signal detectable at 3σ for E_{lab} >50 GeV ($\sqrt{s_{NN}}$ =9.8 GeV)

Assume $\alpha_{J/\psi}^{pA} = 0.93$ in p-A

NA60+, significance of suppression signal

Significance depends on strength of p-A suppression: here moving from $\alpha_{J/\psi}^{pA} = 0.93$ to $\alpha_{J/\psi}^{pA} = 0.88$

□ 20% anomalous suppression signal detectable at 3σ for E_{lab} >60 AGeV ($\sqrt{s_{NN}}$ =10.7 GeV) □ 30% anomalous suppression signal detectable at 3σ for E_{lab} >50 GeV ($\sqrt{s_{NN}}$ =9.8 GeV)

From design to reality

Letter of Intent submitted in 2022 <u>http://arxiv.org/abs/arXiv:2212.14452</u> SPSC encouraged technical proposal

- Submission of technical proposal by 2024
- Construction starts: 2026 (during LS3)
- First data taking: 2029 (together with LHC run 4)

 7-year running with Pb beam (one beam energy per year, from 20 to 150 A GeV)

Conclusions

 \Box Open charm and charmonia in nuclear collisions \rightarrow no results below top SPS energy

□ A new experiment at the CERN SPS has been designed for precise measurements of heavy-quark production → NA60+

□ Couples state-of-the-art and well-known detection techniques

 \Box Measurements from $\sqrt{s_{NN}} \sim 6$ to 17 GeV

- \Box QGP transport properties at high μ_{B}
- Charm thermalization and hadronization
- □ Intrinsic charm
- □ Onset of charmonium anomalous suppression (and correlation with temperature)

□ Specific theory predictions lacking for most observables!
→ Would be extremely useful to finalize realistic physics performance studies

□ Further experimental groups to join! Still ample space for decisive contributions on all items → gas tracking detectors, MAPS, magnet, trigger, DAQ,...

p-A collisions: choices and performance

Default choice (LoI): total thickness 7.0 g cm⁻²

Α	Ве	Al	Cu	In	W	Pb	U
Thickness (cm)	0.1	0.1	0.1	0.1	0.1	0.1	0.1

Maximizes number of nuclear species
 Does not optimize lever arm of the fit to get σ_{pp}

Uniqueness of NA60+ program

□ The NA60+ physics program needs a large integrated luminosity
 → Measurement of rare QGP probes

Such a luminosity can be obtained with Pb-Pb interaction rates >10⁵ Hz, reachable with a ~10⁶ s⁻¹ beam intensity in a fixed-target environment

In the SPS energy range, there are no other existing/foreseen facilities/experiments that can approach this kind of performance

Complementarity with experiments accessing
 different (hadronic) observables in the same energy range (STAR BES, NICA, NA61)
 similar observables in a lower energy range (CBM at FAIR)

Low- $\sqrt{s} J/\psi$: studying intrinsic charm

Intrinsic charm component of the hadron wavefunction |uudcc>

Leads to enhanced charm production in the forward region

Hints from several experiments

First evidence recently claimed by NNPDF group based on LHCb data (Nature 608,483(2022))

 \Box Fixed-target configurations more appropriate for these studies \rightarrow signal not far from midrapidity

R. Vogt, PRC 103, 035204 (2021) R. Vogt, arXiv:2207.04347

\Box R_{pPb} shape dominated by intrinsic charm, already with P_{ic}=0.1%

Open/hidden charm in the NA60+ experiment Belgrade May 31, 2023

24

p-A collisions: choices and performance

Assume $\alpha_{J/\psi} = 0.88$ (as measured at $E_{lab} = 158$ GeV) Alternative choice (LoI): total thickness 8.3 g cm⁻²

Α	Ве	Al	Cu	In	W	Pb	U
Thickness (cm)	1.2	0.	0.3	0.	0.	0.3	0.

 □ Smaller number of nuclear species
 □ Optimizes lever arm of the fit to get σ_{pp} → ~factor 2 smaller uncertainties

□ With 5 x 10¹³ protons on target the expected statistics in pA ia
 □ ~7000 J/ψ at 50 GeV
 □ ~50000 J/ψ at 150 GeV

NA60+, R_{AA} estimate

Based on
 10¹² Pb ions
 8.5 g cm⁻² target
 5 x 10¹³ protons
 8.3 g cm⁻² target

Assume only CNM effects for $N_{part} < 50$ and 20% extra suppression in Pb-Pb for $N_{part} > 50$

\rightarrow Precise evaluation of anomalous suppression within reach even at low energy

N.B.: statistical uncertainties only Assume $\alpha_{J/\psi} = 0.88$

Prospects for $\psi(2S)$ measurements at low \sqrt{s}

Good charmonium resolution (~30 MeV for the J/ ψ) will help ψ (2S) measurements

Expectations based on

- 30 days PbPb, I_{beam} = 1e7 ions/spill
- 15 days pA, I_{beam} = 8e8 p/spill

d'lψ $E_{lab} = 80 \text{ GeV}$ (Je) 120(JeV σ^{ψ(2S)}/BR_{J/ψ}_ τ^{ψ(2S)}/BR_{J/ψ} ')/BR_{J/ψ}- 10^{-2} ь BR_{ψ(2S)→∝} BR_{\u0096(2S)-} $R_{\psi(2S)}$ m NA60+: $J/\psi, \psi(2S) \rightarrow \infty^+ \infty^-, E_{heam} = 80 \text{ GeV}$ NA60+: J/ψ , $\psi(2S) \rightarrow \infty^+ \infty^-$, $E_{\text{heam}} = 120 \text{ GeV}$ NA60+: J/ψ , $\psi(2S) \rightarrow \alpha^+ \alpha^-$, $E_{\text{beam}} = 158 \text{ GeV}$ • p-A, I_{beam} = 1.6e+08 p/s, 15 days • p-A, I_{beam} = 1.6e+08 p/s, 15 days • p-A, I_{beam} = 1.6e+08 p/s, 15 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days 10 10^{-3} 10 L (fm) (fm _ (fm)

 $\Box \psi(2S)/\psi$ measurement looks feasible down to $E_{lab} = 120$ GeV \Box Lower E_{lab} would require larger beam intensites/longer running times

E. Scomparin – INFN Torino

Open/hidden charm in the NA60+ experiment Belgrade May 31, 2023

(assuming stronger suppression for $\psi(2S)$ than J/ψ)

Existing open charm results at SPS energy

- Match track(s) in a muon spectrometer to tracks in a vertex spectrometer
- → Excellent resolution on the muon kinematics
- → Separate prompt (DY+thermal) from nonprompt sources (open charm)

□ Analysis of open charm contribution (semileptonic decays of charm hadron pairs) leads, for In-In collisions at $\sqrt{s_{NN}}=17.3$ GeV, to $\sigma_{cc}=9.5\pm1.3$ (stat.) ±1.4 (syst.) µb assuming kinematic distribution as in PYTHIA6

→ Compatible with corresponding p-A measurements by NA50 and supporting the hypothesis of N_{coll} scaling

No other results available below top SPS energy

"Summary" J/ ψ plot

NA50, EPJC39 (2005) 335 NA60, Nucl. Phys. A830 (2009) 345 R.Arnaldi, P. Cortese, E. Scomparin Phys. Rev. C 81, 014903

Expressed in terms of measured J/ψ
 yield, normalized to an extrapolation of CNM
 effects, evaluated starting from p-A results

Drell-Yan reference used to extract results

Suppression effects beyond CNM reach ~30% in central Pb-Pb collision

□ Qualitatively consistent with suppression of feed-down from $\psi(2S)$ (measured) and χ_c (not measured)

In-In result shows small or no suppression, with the origin of "wiggle" at intermediate centrality unclear (coupling to X(3872) via DD* proposed in Blaschke et al., NPA927(2014) 1)

E. Scomparin – INFN Torino

Extrapolation of CNM effects

□ Use L as scaling variable

→ average thickness of nuclear matter crossed by the cc pair

Exponential behaviour in pA

 \rightarrow break-up effects dominate

□ Light AA collisions (S-U) → compatible with pA behaviour

□ Pb-Pb collisions → breaking of L-scaling: anomalous suppression

10 Caveats

- \Box Assume \sqrt{s} -independence of nuclear effects
- □ Extrapolation of shadowing effects is more complex
 - \rightarrow to be taken into account

NA38 Coll., PLB449 (1999)128 NA50 Coll., EPJC39 (2005)335

p-A results at fixed target: a complex environment

NA60 Coll., Phys. Lett. B 706 (2012) 263-367

 J/ψ yield in pA is modified with respect to pp, with a significant kinematic dependence

 \Box α strongly decreases with x_F

□ for a fixed x_{F} , stronger CNM at lower \sqrt{s}

Superposition of several effects

Shadowing Nuclear break-up Energy loss (at large x_F)

No consistent theory description over the whole x_F range

Quarkonium at CBM: threshold production

- Sub-threshold production (rare but feasible) via multiple collision processes
- Production threshold might be exceeded with SIS100 beam of N=Z nuclei
- □ Both $\mu^+\mu^-$ and e^+e^- decay channels accessible
- □ Needs very large interaction rates \rightarrow 10 MHz (50 times NA60+)
- □ Beam intensities \rightarrow 10⁹/s A, 10¹¹/s p

J. Steinheimer et al, Phys. Rev, C95 (2017) 014911

Quarkonium at CBM: physics performance

 $J/\psi \rightarrow \mu\mu$ AuAu ~30k J/ ψ in 4 weeks at 10 MHz interaction rate pAu ~500 J/ ψ in 4 weeks at 10 MHz interaction rate

J/ψ→ee pAu ~450 J/ψ in 4 weeks at 10 MHz int. rate

 $pA \rightarrow$ lower statistics, but very clean signal

Excited charmonium states: $\psi(2S)$, χ_c

NA50, EPJC39 (2005) 335, EPJC49 (2007) 559

 \Box Clear ordering in the suppression when moving from J/ ψ to ψ (2S)

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel
 → Lower by a factor ~100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

Excited charmonium states: $\psi(2S)$, χ_c

Clear ordering in the suppression when moving from J/ψ to $\psi(2S)$

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel → Lower by a factor ~ 100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

χ_c measurements

□ ~25% of the J/ ψ comes from the χ_c decay → $\alpha(\chi_c)$ important to understand the J/ ψ suppression

 χ_c not measured at SPS (no AA data)

 Available results at HERA-B, pA@ 920 GeV
 (large χ_c sample: ~15000 χ_c -0.35<x_F ^{J/ψ}<0.15)

□ HERA-B observed no significant difference between $\alpha(\chi_c)$ and $\alpha(J/\psi)$

→ similar "global" CNM effects on both resonances in the covered kinematical range (average value $\Delta \alpha = 0.05 \pm 0.04$), but more accurate results are needed

 ❑ Non-trivial measurement, needs detection of low-momentum photon (<1 GeV)
 → conversion or calorimetry

HERA-B, Phys.Rev.D79:012001,2009