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Quarkonia as a possible probe of the QGP

A, B -

0 - tlTe

a

Statistical recombination (phase
space) or « one shot » recombination
(resonance recombination model,
adopted recently by TAMU for
charmonia as well)

Paradigm: Color singlet
=> no flow from the
medium... but could be
due to CO* -> CS

Pre-Equilibrium
Phase (< 1)

Rate equations based on g +
charmonia -> ¢ + cbar instantaneous
cross sections

E{/olutién

a) without QGP /

b) with QGP
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The best working horse today: Rate equations

NG — _D(T(t)) (N (t) — NUT(1)))

Loss \ Gain

Statistical limit (canonical) assumed

For instance, Bhanot-Peskin gluo-dissociation

g c
(w/eapy — 1)*2
agar qg(w) = AD
/ (w/ears)’
®: gluon energy in the quarkonium rest frame s C

Ly(T) ~ [ d®kyou(w)fer(T,w) Dissociation rate

- Ninal = No x{e_ ftgoo F‘I'(T(t))dt] If just suppression
Raa

Various states are still decoupled in their evolution... while in principle, one could have some
gluon-induced “conversion” (not implemented in any model to my knowledge)




Interactive talk...

DL = (1)) (N (t) — N(T(1)))

Loss \ Gain

Statistical limit (canonical) assumed

Given any kind of transport theory, does the asymptotic limit when gain and loss
equilibrate always correspond to the usual Boltzmann distribution ?

Yes of course !
Not necessarily
Dunno

Who cares, | hope we’ll keep on time for the coffee break
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Decoupled production of various HF mesons

Picture behind transport theory :

£
P
P - D Open heavy flavor and quarkonia
_ open charm assumed to be uncorrelated
g C / .
N charmonium Formed after some “formation
. ° _f___f---f"' Y time” T; (typically the Heisenberg
fp(g) time), usually assumed to be

independent of the surrounding

medium



Quantum coherence at « early » time

4_

Initial compact state : o

4L

2

QQ
Coherence/ \ Neglect of coherence

D(rgo) = 0 o< 3 chei(hilr?ihs) — Toc 3o |ei2(@halr? i) = 3, el Ty # 0
Crucial to include coherence !

N.B. : one can model this effect by phenomenological formation time, but lack of control

Dissociation rate: I'(rgg) o asT x ®(mprog) ~ agT? xr



How can we restore the quantumness of Quarkonia
treatment (in interaction with some environment) ?

* Statistical mechanics is about averages... averaging wave functions makes no sense.

Stochastic-like Hamiltonians and
ensemble average on the various
realizations... even possibly
integrating dissipative terms
(Schroedinger Langevin with R. Katz)

Like : less computer demanding

Dislike : cannot be rigorously derived
from fundamental principles

XOR

Deals with density matrix for the full
state (quarkonia + environment)

p =)W
[¥) = [Yqapr) @ 1gq)

Possible to make statistical averages
on the environment (« tracing out »)
while still preserving all

I7

Evolution equation for Pea(TQ: g, g, vg)
Quantum Master Equation

Like : rigorously derived from
fundamental principles

Dislike : computer demanding...
currently for several pairs 7



Decoherence from system-env. interaction

Quantitative model : = ﬁS 4+ I:IE 4+ ﬁ]int

Infinitively massive object, cm : x

Reduced density matrix ps(x,x’)

) }L\ \A /\Scattermg ‘

e _x;? N / from Wigner density Wg(X = x—;x’ ,D)
P ¢, environment T
— - /\ : Fourier conjugate of X — x’
A ‘
Ops(x,x',t)

ot — _;(X o X,)pS(Xa X,v t)

Decoherence factor:

dndn’ Y /
Fix—x) = [ dapayeta) [ Z (1= @m0 XY | gi, git)

41 J
|
do
dQ(f,n’)
Short wave length (A << Ax) Long wave length (A >> Ax)

—x") = i
F(X " ) FtOt ' F = qup(Q)v(Q)q20-transp(Q) X (X o X,)Qg H(X - X,)Z

- Suppresses coherence at large x-x" : classicalization
For small objects, coherence can be preserved over long times (several “cycles”) 8

Total collision rate



Decoherence from system-env.
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Other motivations to go microscopic & quantum

* The in-medium quarkonia are not born as such. One needs to develop an initial compact
state to fully bloomed quarkonia

* The dissociation-recombination reactions affecting quarkonia are not instantaneous... In
dense medium, the notion of cross section should be replaced by the more rigorous
open-guantum system approach (continuous transitions)

* Better suited for « from small to large »

e Extra complication: For RHIC and LHC : many c-cbar pairs ! R
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Pioneering work of Blaizot and Escobedo for many c-cbar pairs => Semi-Classical Fokker-Planck
+ gain/loss rates for color transitions; awaits for implementation in realistic conditions 10



Charmonia in a microscopic theory
Several regimes / effects

pCE(E) Spectral density qCE(E) pCC(E

(B)
A
L pE) | ( |

Time

a

Gluo-dissociation of well identified
levels by scarce “high-energy” gluons
(dilute medium => cross section ok)

Multiple scattering on quasi free
states

Well identified formalisms (Quantum Master Equation, Boltzmann transport, Stochastic
equations,... ) in well identified regimes, but continuous evolution and no unique framework

continuously applicable (to my knowledge)

Yet, still a need to define the equivalent of a formation — dissociation rate 11



Two types of dynamical modelling

T > Ebind
Quantum Brownian Motion

T ~ Epind

(and a 3rd class of its own: statistical hadronization)

T < Ebind

Quantum Optical Regime

ations for
nd Qbars)

e limiting cases

Equilibri

Since one is facing both dissociation and recombination, obtaining a correct equilibrium

limit of these model is an important prerequisite !!!

12



Two types of dynamical modelling

1.2 T T T [ 1 T T T T T T T T T [ T T T T T T T

I QOR TQBNI Tov. damp Tmelt ]
Y |- '
08l Ebinding | QBM mp i

0.15 0.20 0.25 0.30 0.35
T(GeV)
Numbers extracted from potential described in Phys. Rev. D 101, 056010 (2020)

guboge ch



Blaizot-Escobedo Quantum Master Equation

dD Interaction . .dDl(t)y ,
dt = [#, D] representation ’ at AL D)
H=Hao+H1+Hp Coulomb gauge
A p\ DI(t) = Uy(t, to)D(to)U] (1, to)
Free Quark Plasma
Hamiltonian Hamiltonian Average over plasma d.o.f +

rapid environment hypothesis

Quark-Plasma Interactions... ;
Hl = —ngo(T

No magnetic term (NR) Generic Linblad — like
color charge density of | QME on DQ

.. treated as a perturbation the heavy particles
dD!
Q
Y /; lf'/ [n t,x),n® )DQ(I‘O)]A>(1‘ —t,x—a)
0

—I—[DQ(I‘O)na(f'. x'),n(t,x)|A<(t -t ,x — )

batech . \
6“ atec A~ , A< Time ordered HTL gluon propagators 14



Blaizot-Escobedo Quantum Master Equation

Series expansion in T/t

dDQ
Compact form: v = LDy with L=Ly+ L4 @_ L +>

LoDg = —i[Hg,Dg),

D —  Mean field hamiltonian

L1 Dg —5/ V(m—w’)[nawng,,,DQ], ] _
1 == i Fluctuations =>

[[,2 Do 5 Wz —x') ({ngng, Do} — Qn;DQnaw,)], decohence,

xx’ J Linblad form

Z_ -
L3Dg = = f W(z — a') ([ng, ngy D] + [ng. Doig]) | Dissipation

N.B. : Friction is NOT of the Linbladian form => the evolution breaks positivity.

Positivity and Linblad form can be restored at the price of extra subleading terms* :

{‘ 4r”a ‘+ a1%). Daa} — 2( ﬁh?)Doé T
Lo

UbOL@ch

* As well as another time discretization 13



Blaizot-Escobedo Quantum Master Equation

Series expansion in T/t

dDQ
Compact form: v = LDg with L=Ly+ L4 @_ Ls +>
EQDQ = —i[HQ,DQ],
; —  Mean field hamiltonian
iD= -3 [ Viw-a)ngnd. Dol _
2 rx' =
1 Fluctuations,

EQ DQ

5 W(x —z') ({nins, Do} — 2naDong,), | Linblad form

xx’
/l: +a a A i

[ES DQ = E/ W(.’L‘ - CC’) ({naazv nw’DQ] + [nwa Dan’]ﬂ — Dissipation

N.B. : Friction is NOT of the Linbladian form => the evolution breaks positivity.

Positivity and Linblad form can be restored at the price of extra subleading terms* :

{”‘@ Dag} - 2”%0“

UboL@ch

* As well as another time discretization 16



Blaizot-Escobedo Quantum Master Equation

Series expansion in T/t

dD
Compact form: dtQ LDg with L=Ly+ L4 @_ L +>
LoDg = —i[HQ,DQ], ]
D —  Mean field hamiltonian
L1Dg = ——/ V(z —x')[ngns, Dgl, _
2 o -
1 i Fluctuations,
LoDg = - W(x —x') ({ngns, Do} — 2n2Dgns), [ Linblad form

2

xx’
L3Dq = = / W(z —a') ([ng, 1z Dg] + [ng, Dgrig/]) | Dissipation

N.B. : Friction is NOT of the Linbladian form => the evolution breaks positivity.

Positivity and Linblad form can be restored at the price of extra subleading terms :

{(ng ( + Doo} 2(ng + oo ”a .

Application to QED-like and QCD for both cases of 1 body and 2 body densities... 17




QED-like vs genuine QCD case

Genuine QCD

J,
|

{\ }GGCDDDGQDDQGJ

1o0Cog

)

}LQGQGQUQDQUF)Z

—
[

» Scattering from gluons change the
color respresentation : 0 <->s

D
Po=( 7. )

» No binding potential in the octet
chanel => « large » energy gap

QED-like
! . i ,_._ll | r
[ I| I || 1
i—b—‘ i—'— — I
— =
SD  S

» Scattering from do not change the
Casimir:s<->s

> Usual 1S <-> 1P transitions
between bound states.

18



B-E Quantum Master Equation: QED case

* For the relative motion (2 body):
§: fl _ -’1_3’2 = =/ — — —
]— P = 34‘25 and ¢y =5-—35'

 Near thermal equilibrium, Density operator is nearly diagonal => semi-classical
expansion (power series in y up to 2" order)

... However, we know from open
p heavy flavor analysis that it takes
Ep(ra y) = LD(r,y) some finite relaxation time to

o 2V, -V, reach this state
0= "M

Ly =1y -VV(r)
Lo = —15- (H(7) +H(0) - ¢
L = —gipd- (M) + H(0)) -

H(7) : Hessian matrix of im. pot. W
W () =W(0) + 37 H(0) - §

*  Wigner transform -> D(7,p) => {¥,Vy} = {V,,p} Usual Fokker Planck eq.

 Easy MC implementation + generalization for N body system (c-cbar @ LHC)

19



B-E Quantum Master Equation: QCD case

singlet density 2 coupled color representations
matrix (singlet octet)

/ Dy Off color-
Alternate choice : De equilibrium

E (DS) — (DS(rrel- Frel. t)) component
- / . « po e ..
dt \ Do Do(Frel, ¥'rel, t) With (infinite mass limit)
I \ tet densit Ds(r,t) ~ Ds(r,0)e= NIt —
r_ Lsg 5ilsph =~ Ve Color equilibration
= LO,IS/\%O matrix
singlet-octet (Ds|L|D) = (inr,"[vy + fv"?)f‘yy +iCpy - Vlf(r)) Ds
transitions 9CET(r)(Ds — Do)
Cr
Example of the D, evolution (z — W Hr) -y Doty 3H(0) -y Do)
: : . —CpY - [H(0) — H(r)] - Y D,
semi-classical expansion, i.e po Cr s )
series in y=s-s’) : T [VEW(0) — VW (r) — VW (r) - V]| (Ds — D,)
_or (y-H(r) - VyDs+y-H(0) - VyDo)

Y - [H(0) = H(r)] - Vy Do.

X 2MT
gubotech

20



Our ongoing projects

Our Goal:
» Explicitly restore the Linbladian form and the positivity of BE equations =>
term L4

» Gain insight on the quarkonium dynamics inside the QGP by solving exactly
the B-E equations for a single cc pair without performing the Semi-Classical
approximation:

o Evolution of the density matrix

o Evolution of states probabilities over time

o Singlet-octet transitions
o Color relaxation time
o

» Comparison with the semi-classical approach for a various range of QGP
temperatures (should be fine at large temperature... but down to ? )

» Possibly design improved algorithm for intermediate temperatures

6Ubo: zch

21



Positivity
» Equations for the QED-like plasmain 1D :

14p = I (he)? (92 — 02)D —i[V(s) — V(8)]D
+[2W(0) — W(s)— W(g) - 2W(S—28’) + 2W(S;S’)]D

—

+ 0 [2w(0) - wi(s) - w(s)) — 2w (552) + 2w (52| D
+5’

e (2w ()05 + 2W/(s')0w + 2W' (555) (05 — 0s) — 2W'(55) (05 + 09)| D L
Cg.g(;‘;{/;);'? :2 W””(O) + W”“(S) L W!/H(S!) o 2W////(S—25’) + ZWH//(S-ES’)}D \

L (1:0)4 *4 W’”(S)f}s 4 4W”’(Sl)f')5f o 4WH/(S—23’)((.)S B (.)s’) 4+ 4W///(s+23’)(()8 T (')S,)}D

+lo) [4W(0) (82 + 02) + 4W"(8)92 + 4W"(8') 52 +8W”(53')U O’ 8W”(—S*S')U ) ]D
64M2 T2 Gom 1 Sgeg W Us s’ 2 sUs’ T 2 gty | =
,.—.—.i ......................................... ‘
. he)? ot e, .
i ssirePi | -2W/(0) + W'(s) + W'(s)) + 2W" (=5%) —aw"(=)[D Y,

» Indeed subleading in 1/T expansion

> No higher derivatives on D than the 2" one => still a FP equation in the semi-
classical limit.

» Higher derivatives of the imaginary potential W => possible UV divergences

=> need for some regularization. -



Further implementation fea

> 1D grid for both S € |—Smax, +Smax] and
1 Il Not the radial decomposition

yersome

Even states will be.a
consideredg

2u states will be

potential V +i W (based on 3D IQCD
nass spectra and decay widths)

WlD (GGV)

0.8r

T=T), T=0.130

T=0.18

T=0.2 0.6_* T=0.150

T=0.25
—
T=0.35
T=0.45

T=055 T

gubotech 1D potential from R. Katz, S. Delorme & PBG, Eur. Phys. J. A (2022) 58:198



Some selected results for 1 c-cbar system

Color Dynamics : Singlet — octet probabilities:

» Starting from a singlet 1S-like, one expects some equilibration /

thermalisation -> asymptotic values : D¢9 = D¢ = % (1+8) % 5

TN T T T T T T T T T T T T T o At early times : Quasi

0501 exponential behaviour exp(-

t/t), with thermalisation
time t <t~ 2 fm/c
2 0.10 | o Color appears to thermalize

0_055 . Octet weight 1 ontime scales < QGP life
S 1 time, but not

| o | instantaneoulsy.

: o C-cbar can interact with the
00— e L surrounding QGP as an

0 5 10 15 20 |
=>
t (fm/c) octet => energy loss

Suboitech 24




Evolution of the Density matrix

1S singlet initial state:

- 0.02

- 0.0008
£ L 0.0006
. Progressive loss 4
=9 of Q coherence, .
dissociated
~10 component 0
—10 -5 0 = TU
s (fm)

10
I 0.005
5 L 0.004
i%/ 0 L 0.003
o L 0.002
_5
0.001
~10 0.000

-10 =5 0 5) 10
s (fm)

(
-- J t=20 fm/c D
5.0
2.5

long-lived
correlation
5

—10 —! 0 5 10
s (fm)

l 0.0004.

- 0.0003:

- 0.0002!

0.0001

0.0000f
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Evolution of the spatial density

1S singlet initial state:
-10 -8 -6 -4 -2 0 2 4 6 8 10

.I , | B | | o | | I I |
1 Box : (s,s”) € [—10fm, 10fm]| =0fm/c 1 = 300MeV _

0.500 5'”tg'ft t=2 fm/c -
—_ . —— = OcCte 4
|
E y
~ 0100} Surviving :
QO_ . correlation
- 0.050 g
% [ « open » HF

2

< 0010} 10 fm/} .

0.005 i = t=20 fm/c -

Some c-cbar stay at intermediate distance (“recombination”) ... remaining peak in

the asymptotic distribution
26



Evolution of the momentum density

T— T T T [ T T T T [ T T T T T T T T T T T

1" = 300 MeV

0.100 .
—~ 0.001 1
o
\g ]
= 107 N i
(@X A

= |

Q -7 ‘\

107" | Convergence -> . g

\

_ Maxwellian distribution Y ()rﬁ

for p<M, as expected Sptrious region for p>M (cc\)ming fr e

1 0_9 B . mandatory regularization of the imaginary
from SC expansion ) )
potential...room for improvement) 1
| 1 1 1 1 | 1 1 1 1 | 1 1 1 L | 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1
0 1 2 3 = o 6

p (GeV/c)

Mostly sensitive to the distribution at large relative distance
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probabilities

Results for projection on local states

« local states » = eigenstates of the screened potential at a given T (<> vacuum

rrrrrrrrrr

2S-like

vvvvvvvv

vvvvvvvvvvvvvv

.
~

"~ o~1S-like

(

mke

\ ;
Equilibration: c+¢c < @ |

0 10

states)
Pe = tr(DsDCI))
N A
AN T=300 MeV 0.500
0'5Di v
'\-\ ' . U)
. “~--._Total singlet weight L 0.100¢
0.10 e T = 0.050Ff
Decay * -
0051 rate law e
5 0010¢
1S-like | %%
0.01; -
0 é l 1‘01 T 1i5- ll '210 0.001
t (fm/c)
>

20 30

t (fm/c)

40 50 60

At small times, L3 << Lo fluctuations dominate... higher state repopulation
At late times, L3 ~ L5 leading to asymptotic distribution of states.

1S evolution at small time well described by decay rate law (decay rate can

be calculated within the QME)

1P and 2S generated from 1S show a more complex behavior, not governed

by their own decay rate !!!
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Contact with experiment

» Calculation of bottomonia yield using the QME with EPOS4 (T,v) profiles and
starting from a compact pp state. ,
8 P Raa (dlrect)

0 ;
10 Pb — Pb; 0 — 10% 15-like 10%F T
1 1P-like i
2S-like :
9P-like
107! 1S suppression 35-like 10-1F

2S suppression

23 1072¢

Probabilities
=

0‘500}
5 3S suppression

10~ ; 0100
D 0050

o
104 0.010

0 2 4 6 8 10 0005/
Time (fﬂl/(ﬁ) 02 03 04 05 06 07

T(GeV)

» Similar RAA for Y(3S) and Y(2S) although 3S decay rate >> 2S decay rate
> See Stephane Delorme’s talk at Hard Probe 2023 for more details.



Results for Linear quantum entropy
S, =Trp—Trp? =1 — Trp? De Boni, J. High Energ. Phys. (2017) 2017: 64

(results for QED like evolution)

Ptot = 0 GeV singlet 1S-like initial state 1.0
101 ~ — 15-like — T =200 MeV
— 1P-like == T =300 MeV
— 2S-like == T =400 MeV
0.81
£ 107! =
= 3'0.6
E b=
= 5
a N :':
1079 = 0.41
3
- 0.21 | — T = 200 MeV
- _ e T = 300 MeV
[ime (fm/c) [ e T — 400 MeV
I
0.0 - . T -
0 D 10 15 20

Time (fm/c)

» Suppression and decoherence appear to happen on the same time scale...
» ...does not seem in favour of applying classical rate equations (to be investigated

further)
30



Conclusions and prospects

» lllustration of a QME solved exactly, with some interesting features and a
first (not so bad) contact towards experiment using EPOS4 profiles
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