Constraining QGP properties using heavy quarks

Shanshan Cao Shandong University

May 31, 2023 ExploreQGP Workshop, Belgrade

- Developments of heavy quark models at different momentum scales
 - Jet energy loss at high p_T
 - Color potential interaction at low to medium p_{T}
 - Hadronization at low to medium p_{T}
- Probing properties of nuclear matter in heavy-ion collisions
 - Equation of state of QGP
 - Medium geometry and evolution profile of the strong electromagnetic field

Outline

High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

Elastic energy loss ($ab \rightarrow cd$ **)**

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b f_a f_b) \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathscr{M}_{ab \to cd} \right|^2$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $2 \rightarrow 2$ scattering matrices

High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

Elastic energy loss ($ab \rightarrow cd$)

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b)$$

loss term: scattering rate (for Monte-Carlo simulation)

$$\Gamma_{a}^{\text{el}}(\mathbf{p}_{a}, T) = \sum_{b,c,d} \frac{\gamma_{b}}{2E_{a}} \int \prod_{i=b,c,d} d[p_{i}]f_{b}$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $\int f_a f_b \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left[\mathcal{M}_{ab \to cd} \right]^2$

 $2 \rightarrow 2$ scattering matrices

 $\hat{b} \cdot (2\pi)^4 \delta^{(4)}(p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2$

Inelastic energy loss

• Medium information absorbed in $\hat{q} \equiv d \langle p_{\perp}^2 \rangle / dt$

[Majumder PRD 85 (2012); Zhang, Wang and Wang, PRL 93 (2004)]

• Higher-twist formalism: collinear expansion ($\langle k_{\perp}^2 \rangle \ll l_{\perp}^2 \ll Q^2$)

$$\frac{1}{4}\sin^2\left(\frac{t-t_i}{2\tau_f}\right)$$

Flavor hierarchy of jet quenching

Clean perturbative framework is sufficient for describing the flavor hierarchy at high p_T (> 8 GeV) [Xing, SC, Qin and Xing, Phys. Lett. B 805 (2020) 135424]

Flavor hierarchy of jet quenching

NLO initial production and fragmentation + Boltzmann transport (elastic and inelastic energy loss) + hydrodynamic medium for QGP

charged hadron

- g-initiated h & D $R_{AA} < q$ -initiated h & D $R_{AA} = \Delta E_g > \Delta E_{q/c}$
- Although R_{AA} (c->D) > R_{AA} (q->h), R_{AA} (g->D) < R_{AA} (g->h) due to different fragmentation functions => R_{AA} (h) $\approx R_{AA}$ (D)

Flavor hierarchy of jet quenching

- starting from $p_T \sim 8 \text{ GeV}$
- confirmation from future precision measurement

• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson R_{AA}'s

Predict R_{AA} separation between B and h / D below 40 GeV, but similar values above – wait for

Low to medium p_T — effects of non-perturbative interaction

Parametrization of the heavy-quark-QGP interaction potential:

$$V(r,T) = -\frac{4}{3}\alpha_s \frac{e^{-t}}{t}$$

Yukawa (color coulomb)

 α_s and σ are the respective Yukawa and confining interaction strength.

> By Fourier transformation,

$$V(\vec{q},T) = -\frac{4\pi\alpha_s C_F}{m_d^2 + |\vec{q}|^2} - \frac{8\pi\sigma}{\left(m_s^2 + |\vec{q}|^2\right)^2}$$

propagator,

$$iM = iM_c + iM_s =$$

in which $m_d = a + b * T$ and $m_s = \sqrt{a_s + b_s} * T$ are the respective screening masses,

\triangleright For $Qq \rightarrow Qq$ process, we express the scattering amplitude with effective potential

Riek and Rapp, Phys. Rev. C 82 (2010) 035201

 $\overline{u}\gamma^{\mu}uV_{c}\overline{u}\gamma^{\nu}u + \overline{u}uV_{s}\overline{u}u$

R_{AA} and v₂ of **D** mesons at LHC

- later evolution stage (near T_c)

Pb-Pb @5.02 TeV ALICE 30-50% CMS 30-50% Yukawa 0.3 string Yukawa + string 0.2 2 0.1-0.1 15 20 25 10 30 35 p_T (GeV)

Xing, Qin, SC, Phys. Lett. B 838 (2023) 137733

• At high p_T , the Yukawa interaction dominates heavy-quark-medium interaction • At low to intermediate p_{T} , the string interaction dominates, stronger contribution at

R_{AA} and v₂ of heavy flavor decayed electrons at RHIC

 Combination of short-range Yukawa and long-range string interactions provide a reasonable description of the D meson R_{AA} and v₂

Medium to low p_T hadrons — hadronization

Fragmentation:

High momentum heavy quarks are more likelyto fragment into hadrons[Peterson, FONLL, NLO, Pythia, etc.]

Coalescence (recombination):

Low momentum heavy quarks are more likely to combine with thermal partons into hadrons

Medium to low p_T hadrons — hadronization

Fragmentation:

High momentum heavy quarks are more likely to fragment into hadrons [Peterson, FONLL, NLO, Pythia, etc.]

Coalescence (recombination):

Low momentum heavy quarks are more likely to combine with thermal partons into hadrons

- Sudden approximation: $|q,g\rangle \rightarrow |h\rangle$ as T drops across $T_{\rm c}$
- Probability: wave function projection $W_M \equiv |\langle M | q_1, q_2 \rangle|^2$

 $T \text{ drops across } T_{c}$ $\equiv |\langle M | q_{1}, q_{2} \rangle|^{2}$

Coalescence model

- Example: 2-body system for meson formation $W(\vec{r},\vec{k}) \equiv |\langle M|q_1,q_2\rangle|^2 = g_M \left[d^3r' e^{-i\vec{k}\cdot\vec{r}'}\phi_M(\vec{r}) \right]$
 - g_M : ratio of spin-color degeneracy between meson and quark states ϕ_M : meson wavefunction (S.H.O. approximation with a frequency parameter ω) $\vec{r} = \vec{r}'_1 - \vec{r}'_2$ $\vec{k} = \frac{1}{E'_1 + E'_2} (E'_2 \vec{p}'_1 - E'_1 \vec{p}'_2)$ (*r'* and *p'* defined in the meson rest frame)

$$W_s = g_M \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-\sigma^2 k^2} \qquad W_p = g_M \frac{(2\sqrt{\pi}\sigma)^3}{V} \frac{d^2}{d^2}$$

$$\vec{r} + \vec{r}'/2)\phi_M^*(\vec{r} - \vec{r}'/2)$$

• Momentum space Wigner function (after averaging over position space) for s and p wave ϕ_M :

 $\frac{2}{2}\sigma^2k^2e^{-\sigma^2k^2}$ ($\sigma = 1/\sqrt{\mu\omega}$, μ : reduced mass)

Charmed hadron spectra: QGP flow effect

- Coalescence dominates Λ_c production over a wider $p_{
 m T}$ region than D^0
- The QGP radial flow significantly enhances the coalescence contribution
- The inaccuracy of default Pythia fragmentation in pp should have minor effects on AA results, could be improved later (color reconnection [Velasquez et. al., PRL 111 (2013)], or coalescence in pp [Song, Li, Shao, EPJC 78 (2018); Minissale, Plumari, Greco, PLB 821 (2021)])

Charmed hadron chemistry at RHIC

effects of the QGP flow

- (a) Stronger QGP flow boost on heavier hadrons => increasing Λ_c/D^0 with N_{part}
- (b) Coalescence significantly increases Λ_c/D^0 , larger value in more central collisions (stronger QGP flow)

effects of coalescence

• (c) Enhanced D_s/D^0 due to strangeness enhancement in QGP and larger D_s mass than D^0

RHIC vs. LHC

- IF charm quarks have the same initial spectrum at RHIC and LHC, Λ_c/D^0 would be larger at LHC than RHIC due to the flow effect
- The harder initial charm quark spectra at LHC reduces Λ_c/D^0

• Similar theoretical prediction on D_s/D^0

Probing the EoS of QGP

Usual conduct: fix QGP properties using soft hadron observables and study nuclear modification on hard particles

Inverse question: can we probe QGP properties using hard particle observables?

QGP

F.-L. Liu, W.-J. Xing, X.-Y. Wu, G-Y. Qin, SC, X.-N. Wang, Eur. Phys. J. C 82 (2022) 4, 350 F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, arXiv:2304.08787

Hard probes through QGP

Connection between transport and EoS

Transport

$$p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$$

Strong coupling strength g(E,T)

Equation of state

 $P_{qp}(m_u, m_d, \dots, T) = \sum_{i=u,d,s,g} d_i \int \frac{d^3p}{(2\pi)^3} \frac{\left|\vec{p}\right|^2}{3E_i(p)} f_i(p) - B(T)$ $= \Sigma_i P_{kin}^i(m_i, T) - B(T)$ $\epsilon = TdP(T)/dT - P(T), \quad s = (\epsilon + P)/T$

Thermal mass of partons

$$\begin{split} m_g^2 &= \frac{1}{6} g^2 \left[(N_c + \frac{1}{2} n_f) T^2 + \frac{N_c}{2\pi^2} \Sigma_q \mu_q^2 \right] \\ m_{u,d}^2 &= \frac{N_c^2 - 1}{8N_c} g^2 \left[T^2 + \frac{\mu_{u,d}^2}{\pi^2} \right] \\ m_s^2 - m_{0s}^2 &= \frac{N_c^2 - 1}{8N_c} g^2 \left[T^2 + \frac{\mu_s^2}{\pi^2} \right] \end{split}$$

Strategy: Fit g from comparing transport model to data Calculate EoS from g

Parametrization and Bayesian analysis

Strong coupling strength

Interaction between thermal partons (therr

Interaction with hard partons (parton energy

Bayes Theorem

 $P(\boldsymbol{\theta}|\text{data}) \propto P(\text{data}|\boldsymbol{\theta})P(\boldsymbol{\theta})$

posterior distribution

mal scale):
$$g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\frac{(aT/T_{c} + b)^{2}}{1 + ce^{-d(T/T_{c})^{2}}}\right]}$$

gy scale):
$$g^2(E) = \frac{48\pi^2}{(11N_c - 2N_f) \ln \left[(AE/T_c + B)^2 \right]}$$

Parameters: $\theta = (a, b, c, d, A, B)$

model-to-data comparison

$$P(\text{data}|\boldsymbol{\theta}) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{[y_i(\boldsymbol{\theta}) - y_i^{\text{exp}}]^2}{2\sigma_i^2}}$$

prior distribution

Model calibration and parameter extraction

Calibration against observables

(Two examples from many observables)

Extraction of model parameters

EoS of QGP and diffusion coefficient of heavy quarks

Equation of state

- Agreement with the lattice data

Diffusion coefficient

Simultaneous constraint on QGP properties and transport properties of hard probes

Probing medium geometry and E&M field with heavy flavor v₁

Probing medium geometry and E&M field with heavy flavor v₁

- Strong E&M field dominates at the LHC energy

[Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

Tilted geometry w.r.t. the beam direction dominates at the RHIC energy

Probing evolution profiles of the E&M field

- Compare two model calculations of *E*&*M* field
- Δv_1 data favor larger magnitude of B_v than $E_x \rightarrow$ guide improvement for E&M calculation

• Setup 1: Direct solution of Maxwell equation with constant electric conductivity $\sigma = 0.023$ fm⁻¹ • Setup 2: Model $B_y(\tau) \sim B_y^{vac}(0)/(1 + \tau/\tau_B)$, then solve E_x from B_y with Maxwell equation

- pQCD is sufficient to describe flavor hierarchy of jet quenching above 8 GeV
- Color potential interaction improves model calculation at low to medium p_{T}
- Coalescence + fragmentation hadronization is crucial for understanding hadron chemistry at low to medium p_{T}
- Heavy flavor observables can be used to constrain the EoS of QGP
- Heavy quark v₁ probes medium deformation at RHIC, while E&M field at LHC

Summary

Heavy-quark-QGP interaction at different p_T and in different collision systems