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In this article, we reflect on a problem of a black hole entropy. The main point of the article is that the
black hole horizon should be treated as a boundary as well as the boundary at infinity. To make things more
concrete, we apply the general ideas to the extremal Oliva-Tempo-Troncoso black hole and construct the
corresponding Hilbert space using near-horizon hair. After creating the state space by using the proposed
construction, we identify the natural candidates for the microstates responsible for the black hole entropy.
The correct value of the black hole entropy is reproduced by counting the number of distinct microstates
and applying the Boltzmann formula.
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I. INTRODUCTION

The origin of a black hole entropy is one of the most
important open problems in physics. There are many appro-
aches to the problem of black hole entropy, most of which
rely heavily on the algebra of asymptotic symmetries [1–9].
The recognition that symmetries near the horizon play an

important role in understanding black holes has long been
known [9,10]. This idea is further refined for the case of
extremal black holes and goes by the name Kerr/CFT
(conformal field theory) [8]. New insight, that appeared a
few years ago, is that black holes have soft hair [4]; the first
specific realization of this idea can be found in Refs. [1–3], in
which soft hair microstates, known as fluffs, are constructed.
There is also an approach which suggests that near-

horizon Virasoro algebra and 2D CFT are underlining the
dynamics of four-dimensional black holes [5,6] similar to
asymptotic Virasoro in the three-dimensional case.
These approaches have in common that they all are, in

the end, trying to give a better understanding of a black hole
entropy. The (definite) solution of the black hole entropy
problem is a construction of the Hilbert state space of a
black hole. When the Hilbert state space is at our disposal,
we can count the number of microstates which correspond
to the same macrostate, and after using the Boltzmann
formula, we will derive black hole entropy. Because full
treatment requires formulation of consistent theory of
quantum gravity, we can only hope to obtain semiclassical
understanding of microstates. This would be very valuable
because it will answer two important questions. The first
question can be formulated as follows: is there such thing as
quantum gravity? The second question is as follows: are
there any microstates underlying black hole entropy, or is

something fundamentally wrong with our current under-
standing of black holes? Indirect affirmation to both of
these questions is already obtained through AdS=CFT.
Nonetheless, indirect verifications via AdS/CFT cannot
substitute direct construction and insights it, possibly,
provides. This is, exactly, the problem we will (try to)
address in this work.
In the following section, which contains the main ideas

of the paper, we will motivate why a black hole horizon
should be treated as a true boundary and some related
questions. In the next section, we will review the necessary
results, which will be used later. After that, we consider the
algebras of asymptotic and near-horizon symmetries. The
next section is devoted to construction of a state space of an
extremal Oliva-Tempo-Troncoso (OTT) black hole, using
results of the previous sections and deriving entropy by
counting the microstates. In the end, we summarize the
results of the paper.

II. TWO BOUNDARIES

In this section, we motivate why we have to acknowledge
the black hole horizon as the real boundary and obtain some
general conclusions about the factorization of phase space.
We will focus on black hole created by collapse of matter,
as it is expected to be the only physically realistic situation.
The black hole is distinguished by the presence of the

event horizon, which divides space-time into two parts,
the interior and exterior of the black hole, the horizon being
the dividing surface. Classically, nothing cannot escape
from the interior, which means that the event horizon is a
null surface. In the standard coordinates, the horizon is
located in r ¼ r0, and the fact that horizon is a null surface
with normal

nμ ¼ grμ; ð2:1Þ
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where gμν is the inverse metric, gives the constraint on the
metric

nμnμ ¼ grrðr ¼ r0Þ ¼ 0: ð2:2Þ

The black hole is created the moment enough matter is
inside of the area r < r0. We will focus on pure gravity
outside of the horizon; consequently, all matter must be
inside of the horizon. The important point is that we know
nothing about the distribution of matter inside of the black
hole. The standard black hole solutions assume that all
mater is compressed in r ¼ 0, which is the origin of
singularity. Singularities are physically unappealing, but,
as stated, their origin lies in the additional assumption that
all the matter is compressed into a point. This assumption,
implicitly, assumes quite a lot about the short-distance
behavior of all interactions including gravity. As is well
known, short-distance behavior is governed by quantum
gravity, about which we know very little. In light of this, it
is better to not get into the details of matter distribution
inside of the black hole; it is questionable if this is even
possible. This discussion suggests that we should treat the
event horizon as a boundary, at least until a satisfactory
theory of quantum gravity is established. Immediate
implication is that, besides boundary conditions at infinity,
we need to specify them, as well, at the horizon.
Now, the question arises as to what features boundary

conditions on the horizon must have. We will answer this
question in the Hamiltonian formulation. Basic operation in
the Hamiltonian formalism is the Poisson bracket

½A;Q�; ð2:3Þ
as usual, this contains the implicit assumption that func-
tional derivatives of variables are well defined. The
procedure for improving variables so that they have
well-defined functional derivatives in the case of only a
boundary at infinity is very well understood. This pro-
cedure consists of adding surface terms which lead to well-
defined functional derivatives.
When we introduce a horizon, we have two boundaries.

By locality, we can divide all variables into in and out,
describing dynamics inside and outside of the black hole,
respectively,

Qfull ¼ Qin þQout: ð2:4Þ

This separation of variables, though, might seem arbitrary
but in fact is quite natural. Namely, values of in variables
Qin are inaccessible to us due to the presence of a horizon
which hides the interior of a black hole. One can object that
Qfull is found as a solution of (an adequate) (system of)
equation(s), and knowing it, we automatically know the
Qin. This once again steps into the problem, which we
stressed at the beginning, of the matter content and
distribution inside of a black hole. With this in mind, we
come to the conclusion that for the effective description of a

black hole it is very natural to divide variables in the
aforementioned manner.
When we focus solely on in variables, the procedure is

no different than in the case of only a boundary at infinity;
for the sake of completeness, we give the analysis of this
case. It is possible that upon functional differentiation of
Qin a nonzero surface term, at the horizon, arises and we
have to improve it, after which we obtain

Q̃in ¼ Qin þ Γr→r0 ; ð2:5Þ

where Γr→r0 is a surface term defined at r ¼ r0, which is
finite and must assure that variation

δQ̃in ð2:6Þ

has no surface term; this is the so-called integrability
condition.
The analysis on out space is a bit different due to the

presence of two boundaries. At infinity, we come to the
same conclusion as in the case of in space. Additionally,
functional derivatives can give surface terms at the horizon,
and we must add a surface term at the horizon which
cancels it. Consequently, we obtain

Q̃out ¼ Qout þ Γr→∞ − Γr→r0 ; ð2:7Þ

note that

Γr→r0 ð2:8Þ

is the same surface term as the one needed for improving
Qin but contributes with the opposite sign due to opposite
orientation of the boundary at the horizon. Alternatively,
the reason for this is easy to see if we look at Qfull ¼
Qin þQout and note that full variables see only one
boundary at infinity,

Q̃full ¼ Q̃out þ Q̃in ¼ Qfull þ Γr→∞; ð2:9Þ

which is a very well-known result in the Hamiltonian
approach to conserved charges [11], so surface terms at
horizon from Q̃in and Q̃out must cancel each other.
In the rest of the paper we will be concerned with the

case in which Q is a generator of symmetry, in this case we
can extract even more information about the structure of
surface terms.
The general structure of generators of symmetry is that

they are a combination of first-class constraints plus a
surface term (charge). Because in quantum, as well as in
classical, state space all the constraints must hold, we
conclude that the generator of symmetry reduces to a
surface charge.
For calculating Γr→∞, we only need boundary conditions

and dynamics at infinity, while for determining Γr→r0 , we
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need boundary conditions and dynamics in the vicinity out
of the horizon. This means that this analysis is insensitive to
the concrete matter inside of the black hole. This is a known
property of the black hole entropy, and it is tempting to
conjecture that this kind of analysis will capture all the
aspects relevant for its explanation. In turn, this would
mean that we are able to determine semiclassical degrees of
freedom of the black hole responsible for the appearance of
entropy.
On the quantum level, this discussion, superficially,

seems to imply the separation of full Hilbert state space
Hfull into a tensor product of in and out space,

Hfull ¼ Hin ⊗ Hout: ð2:10Þ

The truth is that we need to take care of the condition that
charges are continual,

Q̃in ¼ Q̃full − Q̃out; ð2:11Þ

consequently, the Hilbert space is a tensor product of in and
out space modulo the previous constraint

Hfull ¼ Hin ⊗ Hout=ConstraintðContinuity of chargesÞ:
ð2:12Þ

Now, a few words about the general properties of this
construction are in order. In state space, where all con-
straints hold, we are left only with surface charges. As a
manifestation of locality, spacelike separated operators
commute, and we have that near-horizon Qnh ¼ Γr→r0
and asymptotic Qas ¼ Γr→∞ charges commute,

½Qnh;Qas� ¼ 0: ð2:13Þ

Asymptotic symmetries are transformations that change
boundary data and lead to different field configurations.
They act on whole space-time, not only near infinity. The
asymptotic form of symmetry is investigated at infinitesi-
mal level; this way, we obtain algebra. For example, in 3D
gravity, which is the most investigated and best understood
example, with Brown-Henneaux boundary conditions,
asymptotic symmetry is Virasoro algebra [12].
Near-horizon symmetries are transformations that make

changes near the horizon. As stated, they should contain
asymptotic algebra, possibly with different central charges.
There can also be additional symmetry not seen from the
perspective of infinity. This means that these additional
symmetries are small gauge transformations from the
infinity viewpoint. The important thing to stress is that
at infinity asymptotic conditions capture many different
field configurations, while the asymptotic conditions near
the horizon describe only black hole with different matter
distributions behind the horizon.

The observer very far away from the black hole is well
approximated by the observer at infinity, and he will only
observe asymptotic charges Γr→∞. Because at the semi-
classical level equations of motion hold, it is to be expected
that charges at infinity and near the horizon are not
unrelated. The idea for microstates is as follows. Acting
with near-horizon algebra, we produce an observable
change at infinity which can be measured. But there is
more than one transformation that we can apply that leads
to the same charges at infinity. Counting different ways W
to obtain the same asymptotic charges, we should be able to
reproduce black hole entropy using Boltzmann relation

S ¼ lnW: ð2:14Þ

This procedure can be consistently applied only for semi-
classically well-defined objects; otherwise, we would need
quantum gravity, which implies that all measurable nonzero
charges are much larger than ℏ. This idea identifies black
hole microstates as different geometries which differ from
each other by small gauge transformations from the infinity
perspective but a physical one from the near-horizon
viewpoint. This states, in nature, are soft hair on a black
hole because a generator which should generate them at
infinity is zero.
To extract some general conclusions about what proper-

ties of the state space constructed from near-horizon
symmetry to expect, we review some known approaches
for deriving black hole entropy and draw some conclusion
from their success.
Euclidean calculation of black hole entropy in a nutshell

is as follows. Cut out the interior from the spacetime and
Wick rotate the time outside a black hole and compactify it
on the circle of radius β

2π. The partition function calculated
using this space-time is identified with appropriate ther-
modynamical potential from which the entropy is derived.
This approach yields viable entropy in all known examples.
Euclidean calculation suggests that the interior of a black

hole is not important, at least for the semiclassical proper-
ties. This means thatHout contains all the information about
the black hole. From this, we expect an isomorphism
between the full state spaceHfull and the state space outside
of the black hole Hout.
Cardy formula calculation of a black hole entropy is

specific for three dimensions only. For three-dimensional
asymptotically anti-de Sitter space-times, the algebra of
asymptotic symmetries is Virasoro with central charges c�.
Asymptotic charges act in whole Hilbert state space,
implying that quantum gravity is 2D CFT. The high-energy,
E ≫ 1, density of states ρðEÞ can be calculated using
modular invariance, which, after using the Boltzmann
formula, leads to the entropy formula

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
c−L−

0

6

r
þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
cþLþ

0

6

r
: ð2:15Þ
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Using the Cardy formula, we reproduce black hole entropy
in all known cases.
The success of the Cardy formula implies that semi-

classical entropy is due to high-energy and angular
momentum, if nonzero, states. This is to be expected,
because for quantum correction to be negligible, meaning
that semiclassical gravity is applicable, the same require-
ments are needed.

III. REVIEW OF THE NECESSARY RESULTS

In this short section, we review the basic results about the
OTT black hole.

A. OTT black hole

The stationary OTT black hole [13], an exact solution of
Bergshoeff-Hohm-Townsend gravity [14] and 3D PGT
[15], is a three-parameter solution defined by the metric

ds2 ¼ N2dt2 − F−2dr2 − r2ðdφþ NφdtÞ2; ð3:1aÞ

where

F ¼ H
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

l2
þ b

2
Hð1þ ηÞ þ b2l2

16
ð1 − ηÞ2 − μη

s
;

N ¼ AF; A ¼ 1þ bl2

4H
ð1 − ηÞ;

Nφ ¼ l
2r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
ðμ − bHÞ;

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −

μl2

2
ð1 − ηÞ − b2l4

16
ð1 − ηÞ2

r
: ð3:1bÞ

The roots of N ¼ 0 are

r� ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r  
−
bl
2

ffiffiffi
η

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ b2l2

4

r !
:

As we already stated, the metric (3.1) depends on three free
parameters, μ, b, and η. For η ¼ 1, the stationary OTT black
hole reduces to the static solution, while for b ¼ 0, it
reduces to the rotating Bañados-Teitelboim-Zanelli (BTZ)
black hole with parameters (m; j), defined by 4Gm ≔ μ

and 4Gj ≔ μl
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
.

The conserved charges of the rotating black hole take the
following form:

E ¼ 1

4G

�
μþ 1

4
b2l2

�
; ð3:2aÞ

J ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
E: ð3:2bÞ

B. Near-horizon of extremal OTT
and near-horizon algebra

The extremal limit of a stationary OTT black hole can be
achieved in two different ways as shown in Ref. [16]:
(1) The first way imposes the requirement4μþb2l2 ¼ 0.

This leads to a vanishing of both conserved charges,
and consequently the asymptotic symmetry trivializes
as we showed in Ref. [15].

(2) The second way to obtain an extremal black hole is
to set η ¼ 0, which is equivalent to the requirement
that the angular momentum takes the maximal
possible value. This corresponds to the usual pro-
cedure for the Kerr black hole.

In the latter case, after imposing consistent asymptotic
conditions [15], we get that the Poisson bracket algebra of
the well-defined canonical generators takes the form of the
semidirect sum of centrally extended Kac-Moody and
Virasoro algebra without central extension,

fLm; Lng ¼ −iðm − nÞLmþn;

fLm; Jng ¼ inJmþn;

fJm; Jng ¼ −iκmδmþn;0; ð3:3Þ
where the central charge is given by

κ ¼ l
G
: ð3:4Þ

IV. SYMMETRY ALGEBRAS

In this section, we will review some results about
asymptotic and near-horizon symmetry algebras of an
extremal OTT black hole.

A. Algebra of asymptotic symmetries and its reduction
on space of extremal geometries

We start with the quick review of the results obtained in
Ref. [15], which are necessary for further analysis of this
paper. The authors analyzed the asymptotic symmetry of an
OTT black hole and derived the form of asymptotic
symmetry

ξt¼lTþ l5

2r2
∂2
t TþOðr−3Þ; ξφ¼S−

l2

2r2
∂φ2SþOðr−3Þ;

ð4:1Þ

ξr ¼ −lr∂tT þOð1Þ; ð4:2Þ

where functions T and S are subject to the constraints

T� ¼ T � S ∂∓T� ¼ 0; ð4:3Þ

meaning that functions satisfy T� ¼ T�ðx�Þ with x� ¼
t
l � φ. Also, they constructed the generator of the
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symmetry in the framework of Poincaré gauge theory,
which is given by

G̃ ¼ Gþ Γ; ð4:4Þ

Γ ¼
Z

2π

0

ðξtE þ ξφJ Þ: ð4:5Þ

After passing on the Fourier mode of T�, it is obtained that
Fourier modes of Γ, denoted with L�, satisfy the commu-
tation relations of Virasoro algebra with central charges

cþ ¼ c− ¼ 3l
G

: ð4:6Þ

Virasoro algebra is an asymptotic symmetry of an
arbitrary geometry with given asymptotic behavior. But
we want to describe an extremal OTT black hole and need
to further specify boundary conditions which will lead to
asymptotic algebra of extremal geometries.
The condition for obtaining an extremal rotating black

hole is the equality of energy and angular momentum

lE ¼ J; ð4:7Þ

this is the constraint which we will impose on the general
asymptotic algebra of charge. This constraint is realized for
all extremal geometries if and only if the generators satisfy
the same relation

lE ¼ J ; ð4:8Þ

this bring us to the conclusion

ΓðξÞ ¼
Z

2π

0

dφJ
�
ξt

l
þ ξφ

�
¼
Z

2π

0

dϕJ ξϕ½ϕ�; ð4:9Þ

where

ϕ ¼ φþ t
l
: ð4:10Þ

Consequently, charges are of the form

Q½ξϕ� ¼
Z

2π

0

dϕJ ξϕ½ϕ�: ð4:11Þ

This means that asymptotic symmetry of extremal geom-
etries is not full Virasoro algebra but only chiral part Lþ

n ,
which are Fourier modes of Q½ξϕ� defined as
Lþ
n ¼ Q½eðinϕÞ�, with commutation relations

½Lþ
n ; Lþ

m� ¼ ðn −mÞLþ
nþm þ c

12
n3δn;−m; ð4:12Þ

where

c ¼ 3l
G

; ð4:13Þ

while

L−
n ¼ 0: ð4:14Þ

B. Near-horizon symmetry algebra

From original coordinates ðr; t;φÞ to near-horizon
extremal geometry (NHEG) ðρ; τ;ϕÞ we pass after change
of coordinates

t ¼ τ=ϵ2; r ¼ r0 þ ϵρ; φ ¼ ϕ−ΩH
τ

ϵ2
¼ ϕ−

τ

lϵ2
;

ð4:15Þ

and taking limit ϵ → 0; see Ref. [16].
Asymptotic symmetry of NHEG of an extremal OTT is

studied in Ref. [16], and the following symmetry is derived:

ξτ ¼ TðτÞ; ξρ ¼ ρUðϕÞ; ξϕ ¼ SðϕÞ: ð4:16Þ

Further construction of the generator revealed that ξτ is pure
gauge, so we will treat it as zero from now on.
Charges in NHEK are given by

Q½ξτ� ¼ 0; ð4:17Þ

Q½ξρ� ¼ −8a0
Z

2π

0

UðϕÞe1ϕ; ð4:18Þ

Q½ξϕ� ¼ −4a0
Z

2π

0

SðϕÞωi
ϕeiϕ: ð4:19Þ

C. Vacuum

Space-time which belongs to the allowed field configu-
rations, is a solution of a field equations and with minimal
energy is vacuum of a theory. Bearing in mind that we are
interested in state space of the black hole, the first guess in
three space-time dimensions would be a massless BTZ
black hole. Because a massless BTZ does not have a
horizon, it is hard to make sense of a near-horizon limit. For
this reason, another more appropriate candidate for a black
hole vacuum is a massless OTT, which possesses a horizon
even in a massless case because of the presence of a hair
parameter.
The metric of a massless OTT is

ds2 ¼ ðr − r0Þ2
l2

dt2 −
l2

ðr − r0Þ2
dr2 − r2dφ2: ð4:20Þ

The energy and angular momentum of this solution
are zero,
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E ¼ 0; J ¼ 0; ð4:21Þ

as are all other Virasoro charges

Lþ
n ¼ L−

n ¼ 0: ð4:22Þ

When the near-horizon limit is taken,

t¼ τ=ϵ; r¼ r0 þ ϵ
ffiffiffi
ρ

p
; φ¼ ϕ−ΩH

τ

ϵ
¼ ϕ; ð4:23Þ

after the redefinition of τ and l, we obtain

ds2 ¼ ρ

l
dτ2 −

l2

ρ2
dρ2 − r20dϕ

2: ð4:24Þ

This metric belongs to the allowed metrics analyzed in
Ref. [16], and near-horizon values of the charges for this
metric are

Q½ξτ� ¼ Q½ξρ� ¼ Q½ξϕ� ¼ 0: ð4:25Þ

This motivates us to treat a massless OTT as the black hole
vacuum.

V. CONSTRUCTION OF MICROSTATES

This section is devoted to further development of the idea
that state space of the OTT black hole can be constructed
from near-horizon and asymptotic symmetry algebra. From
now on, we pass from the Poisson bracket to the commu-
tator. Commutation relations are the Poisson bracket
multiplied by imaginary unit.

A. Unitary irreducible representations of the in algebra

We will search for the representations of the following
algebra:

½Ln; Lm� ¼ ðn −mÞLnþm; ½Jn; Jm� ¼ nδnþm;0;

½Ln; Jm� ¼ −mJnþm: ð5:1Þ

Note that we redefined Jn so that the ones we use in the rest
of the paper are divided with

ffiffiffi
κ

p
; this is the reason for the

absence of central charge κ in previous commutation
relations.
The reality of charges on the quantum level becomes the

condition

J†n ¼ J−n; L
†
n ¼ L−n: ð5:2Þ

We construct irreducible representation starting from the
highest state vector jj; li, which satisfies

J0jj; li ¼ jjj; hi; L0jj; hi ¼ hjj; hi: ð5:3Þ

The operators with positive n we interpret as annihilation
operators

Jnjj; hi ¼ Lnjj; hi ¼ 0; n > 0; ð5:4Þ

and operators with negative n we interpret as creation
operators. Then, we construct the whole representation by
acting with creation operators

J−n; L−n; n > 0; ð5:5Þ

the arbitrary state is of the form

L−k1…L−kiJ−n1…J−nm jj; li: ð5:6Þ

Because Virasoro algebra has zero central charge norm of
the state L−njj; li is zero,

kL−njj; hik2 ¼ hj; hj½Ln; L−n�jj; li ¼ 0: ð5:7Þ

Consequently, unitarity implies that the Virasoro part,
except L0, of the near-horizon algebra is trivially repre-
sented. The expectation value in the vacuum state of L0

gives the classical value of Lclassical
0 in vacuum, which is

equal to

hj; hjL0jj; hi ¼ Lclassical
0 ¼ 0; ð5:8Þ

this implies

h ¼ 0: ð5:9Þ

Consequently, the generic vector in irreducible representa-
tion is a linear combination of vectors of the form

jfkigi ¼ Jk1…J−ki jj; 0i: ð5:10Þ

We assume that in state space is a unitary irreducible
representation of in algebra, which we constructed pre-
viously. The structure of the in Hilbert space is of the form

Hin ¼⊕ HðnÞ; ð5:11Þ

this is a structure of the Fock space.

B. Unitary irreducible representations
of the out algebra

The same as we do in the case of in state space, we
assume that out space is a unitary irreducible representation
of out algebra. First, we need to specify what is our out
algebra. The uð1Þ Kac-Moody algebra is certainly present;
the problematic part is Virasoro algebra. Comparing
charges of asymptotic and near-horizon Virasoro algebra.
we see that they share the same structure. This motivates us
to interpret them as charges of the same transformation.
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Further argument, supporting this claim, is that near-
horizon and asymptotic charges have the same value on
OTT background. So, we come to the conclusion that
Virasoro algebra acting on out space is the sum of
asymptotic and near-horizon algebras

Ln ¼ Las
n − Lnh

n ; ð5:12Þ

with commutation relations

½Ln; Lm� ¼ ðn −mÞLnþm þ c
12

n3δnþm;0; ð5:13Þ

where the central charge is the same as the one of
asymptotic algebra

c ¼ 3l
G

: ð5:14Þ

Because near-horizon and asymptotic charges of the
Virasoro algebra have the same values on the OTT black
hole solution [15,16], recalling the discussion of Sec. II, we
derive that values of Virasoro charges on OTT background
are zero,

LnjOTT ¼ 0: ð5:15Þ

Classical values of the charges are expectation values of the
corresponding operators in state describing the desired
geometry, in our case the OTT black hole

hLniOTT ¼ LnjOTT: ð5:16Þ

To enforce the previous relations, we are forced to give a
further restriction on the relevant representations of out
algebra. We demand that Virasoro algebra is trivially
represented. Representation of uð1Þ Kac-Moody algebra
is constructed from vacuum jji,

J0jji ¼ jjji; ð5:17Þ

Jkjji ¼ 0; k > 0; ð5:18Þ

and the rest of states are constructed by acting with creation
operators J−k, k > 0,

jfnmgi ¼ J−n1…J−nm jj; 0i: ð5:19Þ

Now, after we determined relevant irreducible representa-
tions of the out algebra, we proceed with construction of the
complete state space.

C. Hilbert state space

We construct the state space of the OTT black hole using
insight from Sec. II, in which we came to some general
conclusions. Hilbert state space is of the form

Hfull ¼ Hin ⊗ Hout=Constraint ðContinuity of chargesÞ;
ð5:20Þ

states in Hin we denote with jfkigi, states in Hout are
labeled by jfnigi, and the tensor product state we label with

jfkigi ⊗ jfnigi ¼ jfkig; fnigi: ð5:21Þ

On the classical level, the constraint is that Qas½ξr� ¼
Qfull½ξr� is small gauge from the infinity perspective, i.e.,
zero, and that Qin½ξr� ¼ −Qout½ξr�. On the quantum level,
we enforce this by requiring that Jfulln annihilates all states
in full state space for every non-negative n. Demanding that
Jfulln annihilates physical states for every n is too strong a
demand that trivializes state space. Our approach is similar
to Gupta-Bleuler quantization of electromagnetic field.
Acting on states which are the tensor product of in and

out states, this translates into

Jfulln jfkig;fnigi¼ðJinn ⊗I−I⊗Joutn Þjfkig;fnigi¼0; n≥0:

ð5:22Þ

If we take J0 in the previous constraint, we derive that both
Hin and Hout have the same value of j; they are repre-
sentations with the same highest weight.
Further constraints, for n > 0, acting on states of this

form gives the following restriction:

fkig ¼ fnig: ð5:23Þ

This has the important consequence that the generic state in
Hfull is of the form

jfnig; fnigi: ð5:24Þ

We also have

hfnigjJ0jfnigi ¼ Jclassical0 ¼ 0; ð5:25Þ

from which we conclude that

j ¼ 0: ð5:26Þ

We introduce creation a−n and annihilation an operators
acting on Hfull, which create and annihilate modes in state
space of the black hole

a−nj0i ¼ jn; ni: ð5:27Þ

These operators satisfy the same commutation relations
as Jn,

½an; am� ¼ nδnþm;0: ð5:28Þ
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In the end, we note that we have isomorphism

Hfull ≅ Hin ≅ Hout; ð5:29Þ

the isomorphism is realized by

j0i ≅ j0iin ≅ j0iout ð5:30Þ

an ≅ Jinn ≅ Joutn : ð5:31Þ

Interpretation of this result is that the black hole can
effectively be described by the scalar near-horizon degree
of freedom propagating in two-dimensional t − φ space-
time. Carlip [17] arrived at a similar conclusion in his
analysis of asymptotic dynamics of radial diffeomor-
phisms. The presence of a boundary breaks radial diffeo-
morphisms and leads to the appearance of dynamical
degrees of freedom on a boundary.
Recently, Hamiltonian reduction was applied to general

relativity in three dimensions [18] in which horizon is
treated as a boundary with specific boundary conditions.
The authors obtained that, in the set up of their paper, the
dynamics of a black hole is effectively described by
Floreanini-Jackiw scalar theory on the horizon.

D. Action of asymptotic algebra on state space

Now, we have to specify how the asymptotic algebra,
which is Virasoro in our case, acts in state space Hfull.
Because state space Hfull is constructed solely from the
action of uð1Þ Kac-Moody algebra, this implies that
Virasoro algebra can be constructed from Kac-Moody
algebra. We will now do this using the well-known
Sugawara-Sommerfeld construction [19]. This is the same
as the approach taken in Ref. [3].
Operators Lð1Þ

n of the Virasoro algebra with central
charge c ¼ 1 are given as a bilinear combination of
Kac-Moody operators

Lð1Þ
n ¼ 1

2

X∞
p¼−∞

∶an−pap∶; ð5:32Þ

where ∶∶ stands for normal ordering.
Virasoro algebra with arbitrary integer central charge c

can be obtained in the manner [20]

LðcÞ
n ¼ 1

c
Lð1Þ
cn ð5:33Þ

or explicitly

LðcÞ
n ¼ 1

2c

X∞
p¼−∞

∶acn−pap∶: ð5:34Þ

The representation of the asymptotic Virasoro algebra is
identified as

Lþ
n ¼ LðcÞ

n ; ð5:35Þ

with the assumption that central charge is an integer, which
is supported by the results in Ref. [21]. Because we do not
have a full microscopical description, we are not able to
deduce the origin of central charge. We, nonetheless, have
its value from the asymptotic analysis.
For us, the most important operator is Virasoro zero

mode

LðcÞ
0 ¼ 1

c

X∞
p¼0

a−pap ¼ 1

c
N; ð5:36Þ

where we introduced the number operator

N ¼
X∞
p¼0

a−pap: ð5:37Þ

Generic state is linear combination of states of the formP
ia

†
ni j0i, for which we define the level as the

P
ini. The

number operator, as the name suggests, counts to which
level state belongs which is obvious from the commutation
relation

½N; an� ¼ −nan ð5:38Þ

and the construction of the unitary irreducible representa-
tions of uð1Þ Kac-Moody algebra.

E. Microstate counting

We start from the well-known observation that the
classical value of charge is given by the expectation value
of the corresponding quantum generator in the correct
microstate. Because states in Hfull are a linear combination
of jfkigi, it is natural to interpret them as the underlying
states of an OTT black hole. Quantitatively, this discussion
is expressed as

hfkigjLþ
n jfkigi ¼ δn;0L

þ
0 ¼ δn;0

r20
2lG

: ð5:39Þ

Alternatively, from Sugawara-Sommerfeld construction of
Virasoro algebra, we obtain

hfkigjLþ
n jfkigi ¼ δn;0

1

c
hfkigjNjfkigi ¼ δn;0

1

c

X
ki:

ð5:40Þ

From the previous relations, we conclude that

k ¼
X

ki ¼ cLþ
0 : ð5:41Þ

Assuming k ≫ 1, we can use the Hardy-Ramanujan for-
mula for the number of partitions [k] of natural number k,
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which states that the [k] is asymptotically

½k� ∝ 1

4
ffiffiffi
3

p
k
e2π

ffiffi
k
6

p
: ð5:42Þ

In fact, it is expected for both c and L0 to be separately
much larger than 1, so our assumption is a very reason-
able one.
The Boltzmann formula for entropy from the number of

microstates W,

S ¼ lnW; ð5:43Þ

after identification W ¼ ½k� gives

S ¼ 2π

ffiffiffiffiffiffiffiffiffi
cLþ

0

6

r
; ð5:44Þ

which is the same as the entropy obtained in Refs. [15,16]
by different methods.

VI. CONCLUSION

We constructed the state space of an extremal OTT black
hole using its asymptotic and near-horizon symmetry
algebras. The crucial difference between asymptotic and
near-horizon algebra is the presence of uð1Þ Kac-Moody
algebra in the latter, which can be identified as an algebra of
creation and annihilation operators. The Virasoro part of
asymptotic and near-horizon algebra is recognized as the
charges of the same transformation calculated at infinity
and at the horizon. We further assumed that state space is
constructed from unitary irreducible representations of in
and out algebras of symmetry.

The classically observable quantities of the black hole
are conserved charges far away from the horizon, meaning
that we will differentiate only black holes with different
values of asymptotic charges. This way, we identified the
microstates which correspond to the same macrostate, and
using the Boltzmann formula, we reproduced the black hole
entropy.
This construction is essentially quantum, although we

did not include any quantum corrections, because we
worked with Hilbert spaces, which is in line with our
understanding that black hole entropy is quantum in nature.
We also obtained that there is isomorphism of full state

space with state spaces inside and outside of a black hole.
This is in agreement with discussion of Sec. II, in which we
concluded that knowledge of the exterior of a black hole
should be sufficient for a derivation of a black hole entropy
in semiclassical approximation.
This approach essentially relies on the existence of uð1Þ

Kac-Moody near-horizon algebra of radial diffeomor-
phisms and anti-de Sitter asymptotic; consequently, it is
expected that this analysis can be applied, possibly with
some modifications, in any case which fulfilling previously
mentioned requirements. For example, this approach
should be applicable to extremal BTZ with(out) tor-
sion [22].
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We study the behavior of geodesics in the plane-fronted wave background of the three-dimensional
gravity with propagating torsion, which possesses only massive degrees of freedom. We discover
the velocity memory effect, in contrast to the current belief that its existence is due to the presence of
soft particles.
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I. INTRODUCTION

Memory effect for gravitational waves was first discov-
ered by Zeldovich and Polnarev [1] and got its name from
Braginsky and Grishchuk [2]. The conclusion of [1,2] is that
massive test particles, initially at rest, will suffer permanent
displacement after the passage of gravitational wave. For
this reason, this displacement is called memory effect.
The memory effect [1,2] is described in linear approxi-

mation. A nonlinear contribution to the memory effect is
discovered in Ref. [3]; for less technical derivation, see [4].
In the recent years, we have witnessed great new

discoveries connecting asymptotic symmetries, soft theo-
rems, and displacement memory effect [5]. This line of
reasoning applied to the black holes [6] offers new insights
into black hole physics.
Permanent displacement implies that relative velocity of

massive test particles is zero. This conclusion is questioned
in Refs. [7,8], where velocity memory effect is derived on
the contrary to displacement memory effect. The main
result of [7,8] is that passage of gravitational wave will be
encoded not in the permanent displacement but in the
nonzero relative velocity of test masses. For recent develop-
ment on velocity memory effect, see [9], where, among
other things, authors concluded that velocity memory effect
is connected with soft gravitons.
The goal of this paper is to investigate if there is a

memory effect for gravitational waves within the frame-
work of Poincaré gauge theory [10–12]. We shall consider
the solutions of the three-dimensional (3D) gravity with
propagating torsion [13,14], a theory in which all modes are
massive. If the soft modes are the ones that cause memory
effect (according to the already mentioned conclusions in
[9]) there should be no memory effect in this theory.
Let us note that 3D general relativity (GR) is a topo-

logical theory, and there are consequently no gravitational

wave solutions in vacuum. The gravitational waves with
torsion in 3D are solutions in which the metric function
crucially depends on torsion [14], in the sense that in the
absence of torsion, the metric function becomes trivial and
the wave solution “disappears.” This offers us an interesting
opportunity to study the effects of torsion already at the
level of geodesic motion of spinless particles.
The paper is organized as follows. First, we review the

theory of gravity under consideration and its gravitational
pp wave solutions. Next, we derive the geodesic equations
in this pp wave space-time. Thereafter, we investigate the
solutions of these equations. Unfortunately, the geodesic
equations are not analytically solvable except in a very
special case, which we have also analyzed; thus, we solved
the geodesic equations numerically for some characteristic
choices of the coefficients which appear in the gravitational
wave solutions.
Our conventions are as follows. The Latin indices

ði; j;…Þ refer to the local Lorentz (co)frame and run over
)0,1,2 ), bi is the tetrad (one form), hi is the dual basis

(frame), such that hi ⌟ bk ¼ δik; the volume three form is
ϵ̂ ¼ b0 ∧ b1 ∧ b2, the Hodge dual of a form α is ⋆α, with
⋆1 ¼ ϵ̂, totally antisymmetric tensor is defined by
⋆ðbi ∧ bj ∧ bkÞ ¼ εijk and normalized to ε012 ¼ þ1; the
exterior product of forms is implicit.

II. RIEMANNIAN PP WAVES

In this section, we give an overview of Riemannian 3D
pp waves. For details, see [13].

A. Geometry

The metric of pp waves can be written as

ds2 ¼ duðSduþ dvÞ − dy2; ð2:1aÞ

where
*cbranislav@ipb.ac.rs
†dsimic@ipb.ac.rs
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S ¼ 1

2
Hðu; yÞ: ð2:1bÞ

Next, we choose the tetrad field (coframe) in the form

b0 ≔ du; b1 ≔ Sduþ dv; b2 ≔ dy; ð2:2aÞ

so that ds2 ¼ ηijbi ⊗ bj, where ηij is the half-null
Minkowski metric

ηij ¼

0
B@

0 1 0

1 0 0

0 0 −1

1
CA:

The corresponding dual frame hi is given by

h0 ¼ ∂u − S∂v; h1 ¼ ∂v; h2 ¼ ∂y: ð2:2bÞ

For the coordinate xα ¼ y on the wave surface, we have

xc ¼ bcαxα ¼ y; ∂c ¼ hcα∂α ¼ ∂y;

where c ¼ 2.
Starting from the general formula for the Riemannian

connection one form,

ωij ≔ −
1

2
½hi⌟ dbj − hj ⌟ dbi − ðhi ⌟ hj ⌟ dbkÞbk�;

one can find its explicit form; for i < j, its nonvanishing
component reads as

ω12 ¼ −∂ySb0: ð2:3aÞ

Introducing the notation i ¼ ðA; aÞ, where A ¼ 0, 1 and
a ¼ 2, one can rewrite ωij in a more compact form as
follows:

ωAc ¼ kAb0∂cS; ð2:3bÞ

where ki ¼ ð0; 1; 0Þ is a null propagation vector, k2 ¼ 0.
The above connection defines the Riemannian curvature

Rij ¼ 2b0k½iQj�; ð2:4aÞ

where

Q2 ¼ ∂yySb2: ð2:4bÞ

The Ricci one-form Rici ≔ hm ⌟ Ricmi is given by

Rici ¼ b0kiQ; Q ¼ hc ⌟ Qc ¼ 1

2
∂yyH; ð2:5aÞ

and the scalar curvature vanishes

R ¼ 0: ð2:5bÞ

B. Dynamics

1. pp waves in GR

Starting with the action I0 ¼ −
R
d4xða0Rþ 2Λ0Þ, one

can derive the GR field equations in vacuum,

2a0Gn
i ¼ 0; ð2:6Þ

where Gn
i is the Einstein tensor. As a consequence, the

metric function H must obey

∂yyH ¼ 0: ð2:7Þ
However, the solution of this equation is trivial,

H ¼ CðuÞ þ yDðuÞ;
since the corresponding radiation piece of curvature
vanishes.

III. PP WAVES WITH TORSION

A. Geometry of the ansatz

We assume that the form of the triad field (2.2) remains
unchanged, whereas the connection is

ωij ¼ ω̃ij þ 1

2
εijmkmknbnG; ð3:1aÞ

G ≔ S0 þ K: ð3:1bÞ
Here, the new term K ¼ Kðu; yÞ describes the effect of

torsion as follows:

Ti ≔ ∇bi ¼ 1

2
Kkikm⋆bm: ð3:2Þ

The only nonvanishing irreducible piece of Ti is its
tensorial piece

ð1ÞTi ¼ Ti;

while the curvature is

Rij ¼ εijmkmkn⋆bnG0;

Rici ¼ 1

2
kikmbmG0;

R ¼ 0: ð3:3Þ

The nonvanishing irreducible components of the curvature
Rij are
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ð4ÞRij ¼ 1

2
εijmkmkn⋆bnpG0

and the quadratic curvature invariant vanishes Rij �Rij¼ 0.
For details on irreducible decomposition of torsion and
curvature, see [15].
The geometric configuration defined by the triad field

(2.2) and the connection (3.1) represents a generalized
gravitational plane-fronted wave of GRΛ, or the torsion
wave for short.

B. Massive torsion waves

The field equations take the following form [14]:

a0G0 − a1K0 ¼ 0; Λ ¼ 0;

K00 þm2K ¼ 0; m2 ¼ a0ða1 − a0Þ
b4a1

; ð3:4Þ

with G ¼ S0 þ K and S ¼ H=2. The solution has a
simple form,

K¼AðuÞcosmyþBðuÞsinmy;

1

2
H¼a1−a0

a0m
ðAðuÞsinmy−BðuÞcosmyÞþh1ðuÞþh2ðuÞy:

ð3:5Þ

Disregarding the integration “constants” h1 and h2, the
metric and the torsion functions, H and K, become both
periodic in y. In the absence of torsion, the metric function
becomes trivial. This is an expected result since 3D general
relativity is a theory which possesses no propagating
degrees of freedom.
The vector field k ¼ ∂v is the Killing vector for both the

metric and the torsion; moreover, it is a null and covariantly
constant vector field. This allows us to consider the solution
(3.5) as a generalized pp wave.

IV. GEODESIC MOTION

In this section, we shall examine the geodesic motion of
particles in the field of the massive wave with torsion.
At first sight that might be puzzling, since the motion of

spinless particles is not affected by torsion [12,16], and in
the gravitational field, they follow geodesic lines, which are
influenced by the Riemannian connection depending on the
metric. However, gravitational waves with torsion in 3D are
interesting solutions, which are intrinsically different from
the well-known spherically symmetric (static or stationary)
solutions of Poincaré gauge theory [17] (for review, see
[18]). The metric of these solutions is “independent” of
torsion in the sense that it represents Schwarzschild (or
Schwarzschild anti–de Sitter, Kerr, etc.) metric and the
motion of spinless particles is not affected by the presence
of torsion. However, for the gravitational wave solution
(3.5), the metric crucially depends on torsion as we noted in

the previous section. This offers us an interesting oppor-
tunity to study the effects of torsion already at the level of
geodesic motion.
Christoffel connection. The nonvanishing components of

Christoffel (torsion free) connection are given by

Γ̃v
uu ¼

1

2
∂uH;

Γ̃v
uy ¼

1

2
H0; Γ̃v

yu ¼
1

2
H0;

Γ̃y
uu ¼

1

2
H0: ð4:1Þ

Let us mention that nontrivial contribution to metric
function and consequently Christoffel connection stems
from the presence of torsion.
Geodesic equations. The geodesic equation for u takes

the expected form

d2u
dλ2

¼ 0: ð4:2Þ
Therefore, without the loss of generality, we can assume
u≡ λ.
The equation for y is given by

ÿþ 1

2
H0 ¼ 0 ð4:3aÞ

or more explicitly

ÿþ a1 − a0
a0

ðA cosmyþ B sinmyÞ ¼ 0: ð4:3bÞ

Finally, the equation for v reads as

v̈þ 1

2
∂uH þH0 _y ¼ 0: ð4:4Þ

In the special case, whenH does not explicitly depend on
u, the equation (4.4) can be integrated as

_vþHy ¼ C;

where C is a integration constant. Hence, consequently,
we get

v ¼
Z

ðC −HyÞdu: ð4:5Þ

A. Exact solutions

Interestingly, the geodesic equations admit the existence
of exact solutions in particular cases. The simplest case is
when AðuÞ and BðuÞ are constants. In that case, Eq. (4.3b)
can be rewritten in the form

1

2

d_y2

dy
þ a1 − a0

a0
ðA cosmyþ B sinmyÞ ¼ 0:

If we impose initial conditions
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yð0Þ ¼ 0; _yð0Þ ¼ 0; ð4:6Þ

by integrating the previous equation, we obtain

1

2
_y2 þ a1 − a0

a0m
ðA sinmy − Bðcosmy − 1ÞÞ ¼ 0;

or equivalently.

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā sinmy − B̄ðcosmy − 1Þ

p ¼ du;

Ā ≔
2ða0 − a1Þ

a0m
A; B̄ ≔

2ða0 − a1Þ
a0m

B;

which after integration yields the following equation for y:

4i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ā B̄−ðĀ2 þ B̄2Þ cosmy

2

sin2my
4

r

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2 þ B̄2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā sinmy − B̄ðcosmy − 1Þ

p

× sin
my
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tan

my
4

r
F

0
B@iArcsinh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̄þ

ffiffiffiffiffiffiffiffiffiffi
Ā2þB̄2

p
A

q
ffiffiffiffiffiffiffiffiffiffiffi
tan my

4

p
1
CA
������

−
Ā2 þ 2B̄ðB̄ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ā2 þ B̄2

p

Ā2

1
CA ¼ u; ð4:7Þ

where FðϕjkÞ represents the elliptic integral of the first
kind [19].
The choice Ā ≠ 0, BðuÞ ¼ 0 yields the following exact

solution for yðuÞ:

yðuÞ ¼ −
2amð1

2

ffiffiffiffī
A

p
muj2Þ

m
; ð4:8Þ

where amðzjmÞ is a Jacobi amplitude function. H does not
explicitly depend on u; we get that v is given by the
expression (4.5).
The characteristic plots for particle position y and

velocity _y (for m ¼ 2, Ā ¼ 1) are shown in Figs. 1
and 2, respectively.

B. Velocity memory effect

The velocity memory effect is present in the case when
functions AðuÞ and BðuÞ vanish for large u.

FIG. 1. The plot for the particle position in units m ¼ 2, for
Ā ¼ 1.

5 10 15 20
u

1.0

0.5

0.5

1.0

dy
du

FIG. 2. The plot for the particle velocity in units m ¼ 2, for
Ā ¼ 1

FIG. 3. The plot for the particle position y and v in units m ¼ 1, for B̄ ¼ −e−ðu−10Þ2.
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1. Shockwave case

In the shock wave case, when functions AðuÞ ¼ 0 and
BðuÞ vanish exponentially, for example, BðuÞ ∼ e−ðu−10Þ2 ,
numerical solutions of the geodesic equations lead to the
plots for the particle position y and v shown in Fig. 3 and
velocity _y and _v shown in Fig. 4.

2. Slow fallof

In the case when AðuÞ ¼ 0 and BðuÞ ∼ 1=u, numerical
solutions lead to the following plots for the particle

position y and v shown in Fig. 5 and velocity _y and _v
shown in Fig. 6.

V. DISCUSSION

We studied the geodesic motion in asymptotically flat pp
wave space-time, and we discovered the presence of
velocity memory effect. The effect is present for the very
fast falloff of the gravitational wave, as well as for the slow
one. Analysis of this paper provides the first example of
memory effect for gravitational waves with torsion. We

FIG. 4. The plot for the particle velocity _y and _v in units m ¼ 1, for B̄ ¼ −e−ðu−10Þ2.

FIG. 5. The plot for the particle position y and v in units m ¼ 1, for B̄ ¼ −1=u.

FIG. 6. The plot for the particle velocity _y and _v in units m ¼ 1, for B̄ ¼ −1=u.
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demonstrated that torsion waves lead to the memory effect
same as the torsion-less waves do. This is also the first
account of the memory effect in three dimensions to
authors’ knowledge. It would be interesting to see is there
a connection to BMS3 symmetry. Because theory has no
massless modes, without a doubt, we can conclude that
there can be no soft particles responsible for the memory
effect. Consequently, the belief that soft particles are
responsible for the velocity memory effect is demonstrated
to be incorrect. For the related work on massive gravity,
see [20].
Intuitively, we can say that memory effect is due to

energy transfer. Passing gravitational wave transfers energy
to the test particle which after the passage of the gravita-
tional wave continues to move with constant velocity, in
which intensity is dictated by the amount of energy
transferred. Looking at the memory effect in this way
we conclude that displacement memory effect is not
possible, except, maybe, in some special cases where the
total amount of transferred energy would be zero. To make
this intuitive discussion precise, it is required to define

energy in asymptotically flat space-times in a satisfying
manner; this is left for further investigation.
The theory we considered is three-dimensional, while the

four-dimensional case is realistic and relevant for applica-
tions. The next step in investigation is to study geodesic
motion for massive gravitational waves with torsion in four
dimensions. The metric of the gravitational waves with
torsion in 4D has a nontrivial contribution stemming from
the tensorial component of torsion [21] as in 3D, which
affects geodesic motion. Consequently, it is expected
that in 4D, we shall obtain the velocity memory effect
similar to the one noticed in 3D case. Also, there is a
possible difference compared to the memory effect in
general relativity, which, in principle, may be observable.
This will be the possible experimental setup for detection of
torsion.
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Abstract We analyse the motion of test particles in the
spacetime of the plane-fronted (pp) waves with torsion in
four-dimensions. We conclude that there is a velocity mem-
ory effect in the direction of advanced time and along radial
direction, while we have rotation of particles in angular direc-
tion. The velocity memory effect in the aforementioned direc-
tions is severely affected by the value of the tordion mass
and probably it is not observable. A very interesting, prob-
ably observable effect, steams from the rotation, which is
insensitive to the tordion mass.

1 Introduction

When a gravitational wave passes through a system of test
particles it induces an observable disturbance of the system
[1–4]. In other words a system remembers that a wave passed,
and for this reason it is known as the memory effect.

There are two possible outcomes when a wave passes, dis-
regarding the trivial possibility that everything is translated
or boosted in the same way which is unobservable. The first
scenario is that relative velocity of test particles is zero while
they suffer a permanent displacement depending on their ini-
tial conditions. This is known as the displacement memory
effect [1–4], for the results on nonlinear contribution to the
memory effect see [5,6]. The appearance of displacement
memory effect is questioned in [7–9], where authors con-
cluded that test particles will have non-zero relative velocity.
This variation of the memory effect is known as the velocity
memory effect, for recent development see [10–12].

All of the previously mentioned results are obtained in
the framework of general relativity and memory effect is not
much investigated beyond it. Some of the results, known to
the authors, are memory effect for massive graviton investi-
gated in Ref. [13] and memory effect for pp waves in General

a e-mail: cbranislav@ipb.ac.rs
b e-mail: dsimic@ipb.ac.rs (corresponding author)

relativity [14], while, the memory effect of the gravitational
waves with torsion in the Poincaré gauge theory (PGT) has
been investigated only in three-dimensions in Ref. [15].

The aim of this paper is to fill the gap in the literature,
namely to extend results about the memory effect to the grav-
itational waves with torsion in four-dimensions.

Basic dynamical variables in PGT [16–19] are the tetrad
field bi and the Lorentz connection ωi j = −ω j i (1-forms),
and the associated field strengths are the torsion T i = dbi +
ωi

k ∧ bk and the curvature Ri j = dωi j + ωi
k ∧ ωk j (2-

forms). By construction, PGT is characterized by a Riemann-
Cartan geometry of spacetime, and its physical content is
directly related to the existence of mass and spin as basic
characteristics of matter at the microscopic level. General
PGT Lagrangian LG is at most quadratic in the field strengths.
The number of independent (parity invariant) terms in LG is
nine, which makes the corresponding dynamical structure
rather complicated.

The paper is organized as follows. First, we review
the gravitational pp wave solutions with torsion in four-
dimensions. After that, we derive the geodesic equations in
this pp wave spacetime. We finally numerically solve the
geodesic equations.

Our conventions are as follows. The Latin indices (i, j, ...)
refer to the local Lorentz (co)frame and run over (0, 1, 2, 3),
bi is the tetrad (1-form), hi is the dual basis (frame), such
that hi bk = δik ; the volume 4-form is ε̂ = b0 ∧ b1 ∧ b2 ∧
b3, the Hodge dual of a form α is �α, with �1 = ε̂, totally
antisymmetric tensor is defined by �(bib j bkbl) = εi jkl and
normalized to ε0123 = +1; the exterior product of forms is
implicit in all expressions.

2 Review of the pp waves

In this section, we give an overview of 4D pp waves in PGT.
For details see [20].
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2.1 pp waves without torsion

2.1.1 Geometry

In local coordinates xμ = (u, v, y, z), the metric of the pp
waves is of the form

ds2 = du(Hdu + 2dv) − (dy2 + dz2), (2.1)

where the unknown metric function H = H(u, y, z) is to
be obtained from the field equations. The advanced time v

is an affine parameter along the null geodesics xμ = xμ(v),
and u is retarded time such that u = const. are the spacelike
surfaces parameterized by xα = (y, z). Since the null vector
ξ = ξ(u)∂v is orthogonal to these surfaces, they are regarded
as wave surfaces, and ξ is the null direction (ray) of the wave
propagation.

We choose the tetrad field (coframe) to be of the form

b0 := du, b1 := H

2
du + dv,

b2 := dy, b3 := dz, (2.2a)

so thatds2 = ηi j bi⊗b j , whereηi j is the half-null Minkowski
metric:

ηi j =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

The corresponding dual frame hi is given by

h0 = ∂u − H

2
∂v, h1 = ∂v, h2 = ∂y , h3 = ∂z .

(2.2b)

For the coordinates xα = (y, z) on the wave surface, we
have:

xc = bcαx
α = (y, z), ∂c = hc

α∂α = (∂y, ∂z),

where c = 2, 3. After introducing the notation i = (A, a),
where A = 0, 1 and a = (2, 3), one can find the compact
form of the Riemannian connection ωi j :

ωAc = 1

2
kAb0∂cH, (2.3)

where ki = (0, 1, 0, 0) is a null propagation vector, k2 = 0.
The above connection defines the Riemannian curvature

Ri j = dωi j + ωi
mωmj ; for i < j , it is given by

Ri j = 2b0k[i Q j] (2.4a)

where Qc is a 1-form introduced by Obukhov [21],

Q2 = 1

2
∂yy Hb2 + 1

2
∂yz Hb3,

Q3 = 1

2
∂zz Hb3 + 1

2
∂yz Hb2. (2.4b)

The Ricci 1-form Rici := hm Ricmi is given by

Rici = b0ki Q,

Q = hc Qc = 1

2

[
∂yy H + ∂zz H

]
, (2.5)

and the scalar curvature R := hi Rici vanishes.

2.1.2 pp waves in GR

Starting with the action I0 = − ∫
d4xa0R, one can derive

the GR field equations in vacuum:

2a0G
n
i = 0, (2.6)

where Gn
i is the Einstein tensor. As a consequence, the met-

ric function H must obey

∂yy H + ∂zz H = 0. (2.7)

There is a simple solution of these equations,

Hc = A(u) + Bα(u)xα, (2.8)

for which Qa vanishes. This solution is trivial (or pure
gauge), since the associated curvature takes the background
form, Ri j = 0.

2.2 pp waves with torsion

2.2.1 Geometry of the ansatz

We assume that the form of the triad field (2.2) remains
unchanged, while looking at the Riemannian connection
(2.3), one can notice that its radiation piece appears only
in the ω1c components:

(ω1c)R = 1

2
(hcα∂αH)b0.

This motivates us to construct a new connection by applying
the rule

1

2
∂αH → 1

2
∂αH + Kα, Kα = Kα(u, y, z) , (2.9a)

where Kα is the component of the 1-form K = Kαdxα on
the wave surface. Thus, the new form of (ωi j )R reads

(ωic)R := ki hcα(
1

2
∂αH + Kα) b0, . (2.9b)

The geometric content of the new connection is found by
calculating the torsion:

T i = ∇bi + ωi
mb

m = ki b0(b2Ky + b3Kz) = ki b0bcKc. (2.10)

The only nonvanishing irreducible piece of T i is (1)T i .
The new connection modifies also the curvature, so that

its radiation piece becomes

(R1c)R = k1b0�c, �c := Qc + �c, (2.11a)
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where the term �c that represents the contribution of torsion
is given by

�2 = ∂yKyb
2 − ∂z Kyb

3, �3 = ∂z Kzb
3 − ∂yKzb

2.

The covariant form of the curvature reads

Ri j = 2b0k[i� j], (2.11b)

and the Ricci curvature takes the form

Rici = b0ki�, � := hc �c = Q + �. (2.11c)

The torsion has no influence on the scalar curvature and it
again vanishes. Thus, our ansatz defines a RC geometry of
spacetime.

2.2.2 Massive torsion waves

The irreducible decomposition of the curvature implies (see
[20])

(3)Ri j = 0, (5)Ri j = 0, (6)Ri j = 0 (2.1)

whereas the remaining pieces (n)Ri j are defined by their non-
vanishing components as

(2)R1c = 1

2
�(
1bc), (4)R1c = 1

2
(�1bc),

(1)R1c = b0
(

�(ce) − 1

2
ηce�

)
be, (2.2a)

where the 1-forms �i and 
 i are given by

�i = kib0(Q + �), � = ∂y Ky + ∂z Kz,


 i = Xi = −kib0�, � = ∂z Ky − ∂yKz . (2.2b)

Having found (1)Ti and (n)Ri j , we obtain the following form
of the two PGT field equations [20]:

(1ST)� = 0, a1� − a0(Q + �) = 0, (2.3a)

(2ND) − (b2 + b1)(∇
1)b2 − (b4 + b1)(∇�1)b3

− 2
(
a0 − A1

)
T 1b3 = 0,

− (b2 + b1)(∇
1)b3 + (b4 + b1)(∇�1)b2

+2
(
a0 − A1

)
T 1b2 = 0. (2.3b)

Leaving (1ST) as it is, (2ND) can be given a more clear
structure as follows:

(∂yy + ∂zz)� − m2
2+� = 0, m2

2+ := 2a0(a0 − a1)

a1(b1 + b4)
,(2.4a)

(∂yy + ∂zz)� − m2
2−� = 0, m2

2− := 2(a0 − a1)

b1 + b2
. (2.4b)

The parameters m2
2± have a simple physical interpretation.

They represent masses of the spin-2± torsion modes with
respect to the M4 background [22,23],

m̄2
2+ = 2a0(a0 − a1)

a1(b1 + b4)
, m̄2

2− = 2(a0 − a1)

b1 + b2
.

In M4, the physical torsion modes are required to satisfy
the conditions of no ghosts (positive energy) and no tachyons
(positive m2) [22–24]. However, for spin-2+ and spin-2−
modes, the requirements for the absence of ghosts, given by
the conditions b1 + b2 < 0 and b1 + b4 > 0, do not allow
for both m2 to be positive. Hence, only one of the two modes
can exist as a propagating mode (with finite mass), whereas
the other one must be “frozen” (infinite mass).

Important point to be noted is that the two spin-2 sectors
have very different dynamical structures.

• In the spin-2− sector, the infinite mass of the spin-2+
mode implies � = 0, while (1ST) gives Q = 0, which
is nothing other than the GR field equation for metric.
Consequently, the presence of torsion has no influence
on the metric.

• In the spin-2+ sector, the infinite mass of the spin-2−
mode leads to � = 0, whereas (1ST) gives that Q is
proportional to �, with � �= 0. Leading to the conclu-
sion that the torsion function � has a decisive dynamical
influence on the metric.

We shall focus our attention on the spin-2+ sector, where
the metric appears to be a genuine dynamical effect of PGT.

2.2.3 Solutions in the spin-2+ sector

After introducing polar coordinates y = ρ cos ϕ, z =
ρ sin ϕ, Eq. (2.4a) takes the form

(
∂2

∂ρ2 + 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)
� − m2� = 0. (2.5a)

Looking for a solution of � in the form of a Fourier expan-
sion,

� =
∞∑
n=0

�n(ρ)(cne
inϕ + c̄ne

−inϕ),

we obtain:

�′′
n + 1

ρ
�′

n −
(
n2

ρ2 + m2
)

�n = 0, (2.5b)

where prime denotes d/dρ.
The general solution of Eq. (2.5b) has the form

�n = c1n Jn(−imρ) + c2nYn(−imρ), n = 0, 1, 2, . . . (2.6)

where Jn and Yn are Bessel functions of the 1st and 2nd kind,
respectively.
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2.2.4 Solutions for the metric function H

For a given �, the first PGT field equationa0Q = (a1−a0)�,
with Q defined in (2.5), represents a differential equation for
the metric function H :

(∂yy + ∂zz)H = 2(a1 − a0)

a0
�. (2.7)

This is a second order, linear nonhomogeneous differential
equation, and its general solution can be written as

H = Hh + H p,

where Hh is the general solution of the homogeneous equa-
tion, and H p a particular solution of (2.7). One finds that
there is a simple particular solution for H :

H p = σV, σ = 2(a1 − a0)

m2a0
. (2.8a)

On the other hand, Hh coincides with the general vacuum
solution o GR�, see (2.7). Since our idea is to focus on the
genuine torsion effect on the metric, we choose Hh = 0 and
adopt H p as the most interesting PGT solution for the metric
function H . Thus, we have

Hn = σ�n . (2.8b)

The solutions for torsion functions are given in Appendix A.

3 Geodesic motion

In this section we shall examine the geodesic motion of parti-
cles in the field of the massive gravitational wave with torsion.
We shall consider the motion of spinless particles in a grav-
itational field, which follow geodesic lines. It is known that
torsion affects the motion of the particles with spin by causing
its precession [19,25]. However, the gravitational waves with
torsion, which we are considering are intrinsically different
from the well-known spherically symmetric (static or sta-
tionary) solutions of PGT [26,27] (for review see [28]). The
metric of these spherically symmetric solutions is “indepen-
dent” of torsion in the sense that it represents Schwarzschild
(or Schwarzschild AdS, Kerr etc.) metric and the motion
of spinless particles is not affected by the presence torsion.
For the gravitational wave solution (2.5), metric crucially
depends on torsion, as we noted in the previous section.
Christoffel connection The non-vanishing components of
Christoffel connection in polar coordinates are given by

�̃v
uu = 1

2
∂u H, �̃v

uρ = 1

2
H ′, �̃v

uϕ = 1

2
∂ϕH,

�̃ρ
uu = 1

2
H ′, �̃ρ

ϕϕ = −ρ,

�̃ϕ
uu = 1

2ρ2 ∂ϕH, �̃ϕ
ρϕ = 1

ρ
, (3.1)

where H ′ := ∂ρH .
Let us mention that we shall consider the solution with

non-trivial contribution to metric function (and consequently
Christoffel connection) stemming from the presence of
torsion.
Geodesic equations. The geodesic equation for u takes the
expected form

d2u

dλ2 = ü = 0. (3.2)

Therefore without the loss of generality we can assume u ≡
λ.

The equation for v, ρ and ϕ are given by:

v̈ + 1

2
∂u H + H ′ρ̇ + ∂ϕH ϕ̇ = 0. (3.3)

ρ̈ + 1

2
H ′ − ρϕ̇2 = 0, (3.4)

ϕ̈ + 1

2ρ2 ∂ϕH + 2

ρ
ρ̇ϕ̇ = 0. (3.5)

We shall solve the geodesic equations numerically, but let
us first make some reasonable simplifications.

First, v appears only as a second derivative because H is
independent of it. Consequently, we have a shift symmetry

v → v + c0 + c1u, (3.6)

which means that initial conditions at time ui can be chosen
as

v[ui ] = v′[ui ] = 0. (3.7)

Second, in the metric function H there is a factor

σ = 2(a1 − a0)

m2a0
, (3.8)

where a0 = 1
16πG is coupling constant of general relativity

and a1 corresponds to correction in the action stemming from
torsion. Experimental results suggest that a1 is much smaller
than a0 so we can approximate

σ ≈ − 2

m2 . (3.9)

Also, we can introduce reduced variables

v = m2v, r = mρ, (3.10)

while ϕ remains the same. In these variables geodesic equa-
tions do not have explicit dependence on m and have more
suitable form for numerical calculations.

3.1 Memory effect

We have one more unknown in geodesic equations and that is
the form of functions c1n and c2n . We expect that their exact
form is not specially important, as long as they sufficiently
fast tend to zero at infinity. But, we encountered numerical
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Fig. 1 The plot for the particle velocity ṙ for r [0] = 1 and r [0] = 2

Fig. 2 The plot for the particle velocity v̇ for r [0] = 1 and r [0] = 2

problems because for polynomial fall-off the software can-
not handle the computational complexity. Because, of this
problem we decided to focus to Gaussian form of functions,
more precisely to the form e−(u−5)2

. For the initial time we
chose u = 0. As we already noted the initial conditions for
ṽ are

v[0] = v̇[0] = 0, (3.11)

and we assume that particle is initially at rest

ρ̇[0] = ϕ̇[0] = 0. (3.12)

So, the only variable inputs are ρ[0] and ϕ[0] as well as
the modes c1n and c2n we are including.

Mode J0. In this case we set H = J0(−ir)e−(u−5)2
. Because

nothing explicitly depends of ϕ it remains the same as at
initial time. In Fig. 1, we plot radial velocity ṙ in function of
u. While the Fig. 2 shows the value of velocity v̇.

Mode J2. In this case we set H = J2(−ir)e−(u−5)2
sin(2ϕ).

In Fig. 3, we plot the radial velocity ṙ . In Fig. 4, we show the

value of angle ϕ. We see that in angular direction we have
displacement memory effect in contrary to the others where
we have velocity memory effect.

Mode J4. In this case we set H = J4(−ir)e−(u−5)2
sin(4ϕ).

In Fig. 5, we plot the radial velocity ṙ . In Fig. 6, we show the
value of angle ϕ.

4 Discussion

We studied the geodesic motion of test particle in the pres-
ence of the pp wave with torsion. Our analysis discovered
that particles, after the passage of the wave, show a combi-
nation of displacement and velocity memory effect. In the
angular direction we discovered that pp waves induce dis-
placement memory effect, for comparison velocity memory
effect takes place for axial gravitational waves [29]. After
the passage of axial wave burst particles rotate with constant
angular velocity around the symmetry axis.
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Fig. 3 The plot for the particle velocity ṙ for r [0] = 1 and r [0] = 2 in both plots ϕ[0] = 0

Fig. 4 The plot for the particles angular position ϕ for ϕ[0] = 0 and ϕ[0] = π
2 in both plots r [0] = 1

Fig. 5 The plot for the particle velocity ṙ for r [0] = 1 and r [0] = 2 in both plots ϕ[0] = 0
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Fig. 6 The plot for the particles angular position ϕ for ϕ[0] = 0 and ϕ[0] = 1 in both plots r [0] = 1

Because we defined new variables v = m2v and r = mρ

our results have to be interpreted with taking into account the
reasonable value of m. According to the CERN results we
expect that possible mass of tordion is no less that 10 TeV

m ≥ 10 TeV. (4.1)

This order of magnitude of the mass is equivalent to the length
scale �m

�m ≈ 10−20 m. (4.2)

Due to the very large mass of tordion or, equivalently, very
small length scale the physical values of v and ρ are very
small and probably not observable. Fortunately ϕ is insensi-
tive to the value of the mass and offers a possible observable
effect. We see from Figs. 4 and 6 that depending on the ini-
tial angular position the particle will be rotated by a different
angle. Consequently, the particles initially set at some posi-
tions on a circle will be rotated relatively to each other. This
is the possible experimental setup for the detection of torsion
waves.
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A Solutions for the torsion functions Kα

In the spin-2+ sector, the torsion functions Kα can be deter-
mined (by using the condition � = 0) from the equations:

∂y� + m2Ky = 0, ∂z� + m2Kz = 0. (A.1)

Going over to polar coordinates,

Ky = Kρ cos ϕ − Kϕ

ρ
sin ϕ, Kz = Kρ sin ϕ + Kϕ

ρ
cos ϕ,

the previous equations are transformed into

Kρ = − 1

m2 ∂ρV, Kϕ = − 1

m2 ∂ϕV, (A.2a)

or equivalently, in terms of the Fourier modes,

Kρn = − 1

m2

p

q
∂ρ�n, Kϕn = − 1

m2 n�n, (A.2b)

where Kϕ = ∑∞
n=1(dne

inϕ + d̄ne−inϕ) with dn = −icn , and
similarly for Kρ .
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Note on asymptotic symmetry of massless scalar field at null infinity
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In this article we address the question of asymptotic symmetry of massless scalar field at null infinity.
We slightly generalize notion of asymptotic symmetry in order to make sense for the theory without gauge
symmetry. Derivations of the results are done in two different ways, using Hamiltonian analysis and using
covariant phase space. The results are in agreement with the ones previously obtained by various authors
for dual 2-form field and with the results obtained starting from scalar soft theorem.

DOI: 10.1103/PhysRevD.108.085017

I. INTRODUCTION

Asymptotic symmetries at null infinity [1] have attracted
substantial amount of attention in last decade (see Ref. [2]
for overview) because of their connection with soft theo-
rems and memory effect.
A massless scalar field has a soft theorem associated to it

[3] and we expect that there is the corresponding asymp-
totic symmetry. A problem arises when we try to under-
stand what this asymptotic symmetry is, because there is no
gauge symmetry in the theory.
There are many approaches to understand asymptotic

symmetry of a massless scalar and its connection to the soft
scalar theorem. Starting from the soft scalar theorem the
authors in [4] derived what the asymptotic symmetry
should be and generalized the result to all even dimensions
[5]; a scalar field is dual to 2-form field which is the theory
with gauge symmetry. By passing on the dual 2-form
formulation of scalar field the standard approach is used to
derive the asymptotic symmetry [6,7]. This lack of sym-
metry in one and presence in other formulation of the
theory led some to the conclusion that the symmetry theory
is a union of symmetries in all formulations of the theory
[8]. This is an unsatisfactory solution because dual theories
should have same number of symmetries. To better under-
stand this problem an approach that relies on compact extra
dimensions [9] is proposed. There is also related work in
spacelike infinity based on the invariance of the symplectic
form under Poincaré transformations [10] which, also, did
not yield symmetry for the scalar field but recovered results
obtained at null infinity for 2-form field. This work

suggests that a scalar field search for missing symmetry
is not a problem of finding boundary degrees of freedom as
it was in electromagnetism [11]. This approach is gener-
alized to any massless boson in [12,13] with the same
conclusion that there is no apparent symmetry for a
massless scalar.
Differences between our approach and previous

approaches is that we work with scalar field theory and
not with dual 2-form or some extended formulation and
propose a generalization of the notion of asymptotic
symmetry at null infinity. The standard understanding of
asymptotic symmetry starts with gauge symmetry, with
some asymptotic conditions imposed; the part of gauge
symmetry that respects the asymptotic conditions is
allowed. The next step is the derivation of the associated
conserved charges, that are given as an integral over the
corner at infinity—generically some allowed gauge trans-
formations will have identically zero charges and are called
trivial gauge transformations. Allowed gauge transforma-
tions with nonzero charges are an asymptotic symmetry of
the theory, or in other words, allowed modulo the trivial
gauge transformations. To extend the standard notion of
asymptotic symmetry we start from the observation that all
the calculations are done asymptotically and that every-
thing is ultimately about charges and their conservation.
Then, it is natural to propose what the asymptotic symmetry
for any theory, with or without gauge symmetry, should be.
The proposed generalization is as follows. If an asymptotic
transformation, not a priori defined in whole spacetime,
can be represented with a nonzero and conserved charge
then it is an asymptotic symmetry of the theory.
Conservation of charges in this setup can have a more
subtle meaning; for example, conservation for symmetries
at null infinity means that charges at past and future null
infinity are equal, and this is established by more detailed
inspection of the properties of the solutions. Starting from
this definition of asymptotic symmetry we can, at least in
principle, obtain a globally defined transformation if it is
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consistent with equations of motions. The globally defined
transformation is the one which maps solutions onto
solutions and in the asymptotic region coincides with the
asymptotic symmetry; this would explicitly be done by the
boundary-bulk propagator. Notice, that when dealing with
gauge theory we can think of asymptotic symmetry in this
way, with the additional need to fix trivial gauge trans-
formations in order to obtain a unique boundary-bulk
propagator. This generalization of asymptotic symmetry
seems justified for null infinity, as will be demonstrated in
the main part of the paper, but to see if it is possible to apply
it to more general case requires more investigation.
We demonstrate in the rest of the article how this

extended asymptotic symmetry can be obtained using
the example of massless scalar field. We do it both in
the Hamiltonian and covariant phase-space formalism as
these are two dominant approaches both with their own
pros and cons.

II. HAMILTONIAN CHARGES

A. Coordinates

Wewill work in four spacetime dimensions although it is
trivial to see that results hold in other dimensions. We use
mostly minus convention for the Minkowski metric. In the
Hamiltonian approach we use light cone coordinates;
u ¼ t − r, v ¼ tþ r, and xa are the coordinates on the
sphere. The metric is given by

ds2 ¼ dudv − gabdxadxb; ð2:1Þ

with

gab ¼
�
u − v
2

�
2

γab; ð2:2Þ

where γab is the metric on the unit sphere. An explicit form
of the metric on the sphere γab is not important for the
details of our analysis and can be taken as the standard form
or in complex coordinates as in [1,2]. Future null infinity
Jþ is reached in the limit v → ∞ with the other coordinates
fixed. Additionally, with past null infinity J− we obtain in
the limit, u → −∞, with other coordinates fixed.
In the covariant phase-space formalism we can use light

cone coordinates or outgoing coordinates for future null
infinity with the metric

ds2 ¼ du2 þ 2dudr − r2γabdxadxb; ð2:3Þ
where in limit, r → ∞, we reach future null infinity Jþ. The
metric in ingoing coordinates, that are suitable for past null
infinity, is given by

ds2 ¼ dv2 − 2dvdr − r2γabdxadxb; ð2:4Þ

and past null infinity J− we get in r → ∞ limit.

B. Canonical analysis

Action of self-interacting massless scalar in light cone
coordinates is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
∂uϕ∂vϕ −

1

2
gab∂aϕ∂bϕ − VðϕÞ

�
; ð2:5Þ

where VðϕÞ is any polynomial with degree higher than 3;
the reason why ϕ3 interaction must be excluded will be
described later in text. We will focus on future null infinity
Jþ as it is trivial to see that the same calculation is valid for
past null infinity J−, just by changing u and v. Massless
particles evolve along the v direction and for v → ∞ they
go to Jþ. For this reason it is valid to take v as an evolution
parameter in Hamiltonian dynamics. For more details on
Hamiltonian dynamics see Refs. [14,15].
The impulse is obtained by the standard definition

π ¼ ∂L
∂∂vϕ

¼ ffiffiffiffiffiffi
−g

p
∂uϕ: ð2:6Þ

Because the right-hand side does not contain a derivative
over v we get the constraint (at every point)

ψ ¼ π −
ffiffiffiffiffiffi
−g

p
∂uϕ ≈ 0: ð2:7Þ

The Poisson bracket of constraints at different points is

Ωðv; x; x0Þ ¼ fψðv; xÞ;ψðv; x0Þg ¼ −2∂uδðx − x0Þ; ð2:8Þ

where we introduced abbreviation x ¼ ðu; xaÞ.
The total Hamiltonian determines the evolution of the

system [14] and is given by

HT ¼ H þ
Z

dud2xaΛψ ; ð2:9Þ

where H is Hamiltonian that we calculate in usual manner

H ¼
Z

dud2xaðπ∂vϕ − LÞ

¼
Z

dud2xa
ffiffiffiffiffiffi
−g

p �
1

2
gab∂aϕ∂bϕþ VðϕÞ

�
: ð2:10Þ

Since the Hamiltonian is obtained when integrating over a
Cauchy surface, and v ¼ const is a Cauchy surface only
when v goes to infinity, the rest of analysis is valid only in
immediate vicinity of Jþ. The consistency condition of the
constraint

fψ ; HTg ¼ 0; ð2:11Þ

gives the solution for a multiplier Λ up to arbitrary
u-independent function. The presence of an arbitrary
function means that there is a first-class constraint hidden
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in the second-class constraint ψ . An alternative way to see
that there is first-class constraint hidden among the second
class is by looking for the presence of a zero mode in
Ωðv; x; x0Þ, see Ref. [15]. The eigenvalue equation takes
form

Z
d3x0Ωðv; x; x0Þkðx0Þ ¼ 2∂ukðxÞ; ð2:12Þ

and kðxÞ is a zero mode if and only if it does not depend
on u.

C. Charges

In order to construct the charge we will adopt the
approach used in [16] where the same situation appeared.
We construct the generator using the whole constraint ψ
and not only the first-class part but we multiply it with
the u-independent function Λ and not completely arbi-
trary one

Ψ ¼
Z

dud2xaΛψ : ð2:13Þ

This is enough to select the first class from the full
constraint, see Ref. [16] for more details.
We demand that the variation of the generator is well-

defined, meaning that there is no surface term

δΨ ¼
Z

Aδϕþ Bδπ; ð2:14Þ

which leads to the need to add a surface term to the
generator [17]

Ψ̃ ¼ ΨþQ ¼
Z

Λπ; ð2:15Þ

where the surface term is given by

Q ¼
Z

dud2xa
ffiffiffi
g

p
Λ∂uϕ; ð2:16Þ

and represents the charge associated to the transformation.
The asymptotic behavior of scalar field near null infinity is

ϕ ∝
2φðu; xaÞ

v
þO

�
1

v2

�
; ð2:17Þ

where this is the usual φ
r asymptotic used in [4,10] (just in

light cone coordinates). We immediately derive the behav-
ior of Λ from

δΛϕ ¼ fϕ; Ψ̃g ¼ Λ; ð2:18Þ

and get

Λ ∝
2λðxaÞ

v
þO

�
1

v2

�
: ð2:19Þ

Substituting the asymptotic behaviors of the field and
parameter Λ into the expression for charge, we obtain
after simple algebra,

Q ¼
Z

dud2xa
ffiffiffi
γ

p
λðxaÞ∂uφðu; xaÞ

¼ −
Z

d2xa
ffiffiffi
γ

p
λðxaÞφð−∞; xaÞ: ð2:20Þ

The last equality follows from the fact that there are no
massive particles because then the field φ goes to zero at
u → ∞ (see Refs. [2,4]). The result is in agreement with the
expressions for charge obtained in [4–7].
We can repeat the same calculation at past null infinity

J− and obtain the charge

QJ− ¼
Z

dvd2xa
ffiffiffi
γ

p
λðxaÞ∂vφðv; xaÞ

¼
Z

d2xa
ffiffiffi
γ

p
λðxaÞφð∞; xaÞ: ð2:21Þ

At first glance these two charges are unrelated as the
parameter λ at past and future null infinity are not
connected, and it is not obvious how to establish con-
servation in any sense. Careful inspection of the equations
of motion [4] reveals that the asymptotic values of the field
at past and future null infinity are connected. Namely,
they are equal for antipodal points that approach spatial
infinity

φJþðu ¼ −∞; xaÞ ¼ φJ−ðv ¼ þ∞;−xaÞ: ð2:22Þ
The reason for this can be traced back to the discontinuity
of boosts at spatial infinity [2]. If we impose the antipodal
matching condition λJþðxaÞ ¼ −λJ−ð−xaÞ on parameter λ,
then we obtain equality of charges at past and future null
infinity and retrieve the conservation of charges.

III. COVARIANT PHASE SPACE

Now we analyze the symmetry at null infinity of
massless scalar field in the covariant phase-space approach
(for an introduction see Ref. [18]). How to systematically
construct charges is well elaborated on in [19].

A. Symplectic form

The starting point is the variation of the action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð3:1Þ
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which is easy to calculate

δS ¼
Z

d4x
�
−∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νϕÞδϕ −

ffiffiffiffiffiffi
−g

p ∂V
∂ϕ

δϕ

þ ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕδϕÞ

�
; ð3:2Þ

from which we obtain the equation of motion (EOM)

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ þ

ffiffiffiffiffiffi
−g

p ∂V
∂ϕ

¼ 0; ð3:3Þ

as well as the presymplectic potential

θμ ¼ ffiffiffiffiffiffi
−g

p
gμν∂νϕδϕ: ð3:4Þ

The symplectic form on spacelike surfaces is given by the
standard formula

Ω ¼ δ

Z
Σ
nμθμ; ð3:5Þ

where Σ is Cauchy surface with the orientation given by unit
normal nμ that points toward the future, see Ref. [19].
Generally, the symplectic form is a surface term obtained
by applying Stokes theorem on

R
d4x∂μδθμ and keeping only

the relevant surface term. For future null infinity only terms at
Jþ and at past null infinity only terms at J−with the additional
change of sign because normal points to the “past”.
At future null infinity, assuming the same asymptotic

behavior of the scalar field as before, the symplectic form is
given by

Ω ¼
Z
Jþ

dud2xa
ffiffiffi
γ

p
δ∂uφδφ: ð3:6Þ

The same result, only with u replaced by v, holds at past
null infinity.

B. Symmetry at null infinity

The symplectic form is always invariant under the
transformation

δλφ ¼ λ; ð3:7Þ

where λ is field independent δλ ¼ 0. This is the trivial
invariant of the symplectic form that is always present and
does not automatically imply symmetry. An additional
condition that the transformation must fulfill to be a
symmetry is that it maps solution onto a solution.
The equation of motion in ðu; r; xaÞ coordinates is

ffiffiffi
γ

p
r2∂u∂rϕþ ffiffiffi

γ
p

∂rðr2∂uϕÞþ∂að ffiffiffi
γ

p
γab∂bϕÞþ ffiffiffi

γ
p

r2
∂V
∂ϕ

¼0:

ð3:8Þ

Assuming the same asymptotic behavior of the scalar
field φ

r as before, we see that if there was g
3
ϕ3 term

in the potential V, the leading term is of order Oð1Þ and
reads

gφ2 ¼ 0; ð3:9Þ

namely ϕ3 interaction makes asymptotic theory trivial.
Next orders of expansion of the EOM give the solution for
subleading terms as functions of free data φ. Completely
analogous equations hold in ingoing coordinates ðv; r; xaÞ
at past null infinity.
The invariance of symplectic form under transformation

is equivalent to the claim that we can obtain the charge
associated to that transformation via the following
equation [19]:

δQ ¼ −IXλ
Ω; ð3:10Þ

where IXλ
is contraction that acts as IXλ

δφ ¼ λ. ChargeQ is
easily calculated using previous equation

Q ¼
Z

dud2xa
ffiffiffi
γ

p ðλ∂uφ − ∂uλφÞ; ð3:11Þ

where there is an additional term proportional to ∂uλ in
comparison to the result for charge in the Hamiltonian
approach. We point out again that charge is not useful if
there is not some kind of conservation associated to it. We
see that if parameter λ is u independent we get the same
result for charge as in the Hamiltonian approach and it is
conserved with the addition of the antipodal matching
condition. We argue that for any λ that does depend on u
this is not possible. By doing partial integration, the charge
can be transformed into

QJþ ¼ −
Z

d2xa
ffiffiffi
γ

p
λJþφJþðu ¼ −∞Þ

− 2

Z
dud2xa

ffiffiffi
γ

p
∂uλJþφJþ ; ð3:12Þ

and analogous for past null infinity J−. The first term is the
same as Hamiltonian charge that is conserved due to the
antipodal matching condition. This implies that second
term must be conserved separately as

Z
dud2xa

ffiffiffi
γ

p
∂uλJþφJþ ¼

Z
dvd2xa

ffiffiffi
γ

p
∂vλJ−φJ− : ð3:13Þ

We expect that fields at past and future null infinity can be
related via a transformation that should be nonlinear due to
the interaction

φJþ ¼
Z

dvd2x0aSðu; x; v; x0;φJ−ÞφJ− ; ð3:14Þ
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which after substitution into the above equation leads to

Z
dud2xaSðu; x; v; x0;φJ−Þ∂uλJþ ¼ ∂vλJ−ðφJ−Þ: ð3:15Þ

This means that starting from the field-independent
parameter λJþ we get field-dependent parameter λJ− at past
null infinity. This contradicts the starting and crucial
assumption; for construction of the charge the parameter
λ must be field independent. Consequently, we are forced
into taking u independent λJþ and v independent λJ− , in
agreement with the Hamiltonian approach.

IV. DISCUSSION

We derived asymptotic symmetry of massless scalar field
at null infinity directly and not by passing to the dual
2-form field formulation.
The first derivation is the Hamiltonian and relies cru-

cially on the presence of constraints in the theory. In the
scalar field case, constraints appear only is special coor-
dinates, we worked in light cone coordinates, and in most
of other coordinates the symmetry is completely hidden.
Covariant phase space offers a more direct and simple

way of deriving symmetry. We search for transformations
that leave the symplectic form at null infinity invariant and
we construct the charge via the variational equation if and
only if it is conserved, meaning that if it is the same at past
and null infinity the transformation is really asymptotic
symmetry. This gives a computational approach that can be
applied to any theory and unravel the hidden asymptotic
symmetries. This topic is left for future research.

Besides the direct derivation of asymptotic symmetry
another unanswered question is how do these charges act.
We offer our view on this in the context of the extended
notion of asymptotic symmetry.
Globally defined symmetry maps solutions onto solu-

tions. Starting from this obvious claim we can demand that
action of asymptotic symmetry is extended on to the whole
spacetime in a way that satisfies this requirement. This can
be done when asymptotic symmetry shifts initial and final
conditions at null infinity in a way that is consistent with the
EOM. For an explicit expression of the action of symmetry
transformation we would need boundary-bulk propagator
i.e., an explicit solution with given initial or final conditions
at null infinity. Because in the case of the scalar field
antipodal matching conditions for field φ and parameter λ
have opposite signs asymptotic symmetry cannot be
extended into the bulk and is defined only asymptotically.
An open problem that remains is the derivation of the

symmetry at spatial infinity. The approach of [10] shows
that there is no justification for adding boundary degrees of
freedom at spatial infinity for the scalar field; that is a
necessary ingredient in their approach and it seems like the
same holds for the approach of this article. We must
conclude that there is still a long way to go if we want
to fully understand symmetries in field theory.
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Abstract. In this article, we review two black hole solutions to the five-dimensional 

Lovelock gravity. These solutions are characterized by the non-vanishing torsion and 

the peculiar property that all their conserved charges vanish. The first solution is a 

spherically symmetric black hole with torsion, which also has zero entropy in the semi-

classical approximation. The second solution is a black ring, which is the five-

dimensional uplift of the BTZ black hole with torsion in three dimensions. 

Key words: black hole, torsion, alternative theories of gravity 

1. INTRODUCTION 

Gravity is the interaction which we are aware of for the longest period of time of all 

the known interactions but, paradoxically, it is also the one we know the least about. 

Quantum gravity is the goal which drives the most of modern research in high-energy 

physics. Unfortunately, the realm of quantum gravity is beyond our current experimental 

abilities and researchers have to come up with ingenious ideas how to go around this. 

Fortunately, the effects of quantum gravity are visible in black hole physics already in the 

semi-classical level. This makes black holes the most important objects in gravity and 

this is the very reason why they were extensively studied in the past century. Now, it is 

well known that general relativity cannot be the whole story and for this reason, for 

different purposes, research went in the direction of alternative theories of gravity. Some 

hope to construct a good theory of quantum gravity in this way, others, less ambitious, 

hope to gain a small insight into the quantum effect of gravity. 

Lovelock gravity is an interesting generalization of general relativity, which is a 

unique ghost-free higher derivative theory of gravity with second-order field equations. 

In three and four dimensions, Lovelock gravity reduces to general relativity. Originally, 
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Lovelock gravity is formulated in the second order, i.e. the metric tensor is a dynamical 

field. More interesting is the first order formulation in which we treat the vielbein and 

spin connection as independent dynamical variables of our theory. A theory formulated in 

this way is no longer torsion-less but may and does contain solutions with non-trivial 

torsion. The first order formulation is convenient because it contains torsion-less theory 

as a limit and is conceptually necessary for coupling with fermionic matter fields and 

supersymmetric extensions of the theory. The Einstein-Cartan theory, the first-order 

formulation of general relativity, has the property that all vacuum solutions are without 

torsion, the vacuum solutions of the Lovelock gravity are more complicated since there 

exist solutions with non-zero torsion. Lovelock gravity possesses a large number of black 

hole solutions (see Aros et al., 2001; Boulware and Deser, 1985; Camanho and Edelstein, 

2013; Canfora et al., 2007; Canfora et al., 2008; Cai Rong-Gen and Ohta, 2006; Cai Rong-

Gen et al., 2010; Cvetković and Simić, 2016; Cvetković and Simić, 2018; Dotti et al., 2007; 

Garraffo and Giribet, 2008; Kastor and Mann, 2006; Maeda et al., 2011, and references 

therein). Many of them possess exotic properties, for example, zero mass (Cai Rong-Gen et 

al., 2010; Cvetković and Simić, 2016; Cvetković and Simić, 2018), peculiar topology of the 

event horizon (Cvetković and Simić, 2016; Kastor and Mann, 2006; Maeda et al., 2011; 

Ray, 2015), etc. This brings us to the problem of black hole uniqueness. Solutions of 

general relativity are highly constrained, but things change when we go into higher 

dimensions. In higher dimensions, black hole solutions appear which have the non-spherical 

topology of the event horizon, more precisely, black string, black ring and black brane 

(Emparan and Reall, 2002; Emparan and Reall, 2008; Horowitz and Strominger, 1991; 

Kastor and Mann, 2006). It is not uncommon that these black holes suffer from various 

instabilities, for example, black strings and branes suffer from Gregory-Laflamme 

instability (Gregory and Lafflamme, 1993), and will decay into a black hole with a spherical 

horizon. We see that gravity in higher dimensions is a very interesting area of research, full 

of surprising discoveries, whose importance is in its applications in many different areas. 

In the end, a few words on notation. We use the following conventions: Lorentz 

signature is mostly minus, local Lorentz indices are denoted by the middle letters of the 

Latin alphabet, while space-time indices are denoted by the letters of the Greek alphabet. 

For notational simplicity, we mostly use differential forms instead of coordinate notation,  

in all formulas the wedge product is not written explicitly. 

2. LOVELOCK GRAVITY 

Lovelock gravity (Lovelock, 1971; Lovelock, 1972) is a minimalistic generalization 

of general relativity and is one of many alternative theories of gravity which is under 

constant investigation. 

The first-order formulation of gravity as dynamical variables has the vielbein    
1-form and the spin connection          1-form.  In local coordinates x

µ
, we  

can expand the vielbein and the connection 1-forms as      
            

  
   . 

Gauge symmetries of the theory are local translations (diffeomorphisms) and local 

Lorentz rotations, parameterized by ξ
µ
 and ε

ij
, respectively. 

From the dynamical variables, we can construct field strengths torsion T 
i
 and 

curvature 
ijR  (2-forms), which are given as 
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i i i ik

kT e de e   ,  

 
ij ij i kj

kR d    ,  

where dx     is the exterior covariant derivative. 

Metric tensor g  can be constructed from the vielbein 
ie  and flat metric ij  

   , , ,, ( )i j
ij ijg e e        .  

The anti-symmetry of 
ij  is equivalent to the metric condition g = 0. The geometry 

whose connection is restricted by the metric condition (metric-compatible connection) is 

known as Riemann-Cartan geometry. 

The connection 
ij  determines the parallel transport in the local Lorentz basis.  

Because parallel transport is a geometric operation it is independent of the basis. This 

property is encoded into PGT via the so-called vielbein postulate, which implies 

 ijk ijk ijkK    ,  

where  is the Levi-Civita connection, and 
1

( )
2

ijk ijk kij jkiK T T T     is the contortion. 

The Lagrangian of Lovelock gravity in D dimensions is given by 

 

[ / 2]

0
2

D
p

p

p

L L
D p








 ,  

where p are real parameters and Lp is dimensionally continued Euler density defined in 

the following manner 

 2 1 21 2

1 2 D

2
i i ...i   p pi ji i D p DR R e e    .  

Because we will be concerned with Lovelock gravity in five dimensions, we will only 

give equations of motion for this case. A variation of the action with respect to the 

vielbein e
i
 and spin-connection  

ij
 leads to the following field equation 

 0 1 2( ) 0j k l n jk l n jk ln
ijkln e e e e R e e R R       (1) 

and 

 2( 2 ) 0k l kl n
ijkln e e R T   . (2) 

Note that from the equation (2) it does not follow that torsion is zero in the vacuum, the 

explicit examples of this are given in the following sections where vacuum solutions with 

non-vanishing torsion are constructed. 

Finding the solution to the equations (1) and (2) is greatly simplified in the torsion-less 

sector because the equations (2) are automatically solved in this case.  For this very reason 

finding solutions with non-trivial torsion that exist for arbitrary values of parameters is 

extremely hard and still out of reach. 
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3. SPHERICALLY SYMMETRIC BLACK HOLE 

This section is based on the results in the reference (Cvetković and Simić, 2018). 

3.1. Killing vectors 

We search for the static solution of equations that possesses SO(4) symmetry. Killing 

vectors that correspond to this symmetry are. 

 

0

1

2

3

4

5

6

,

,

,

,

,

,

.

t

cos cot sin

cos cot sin

cot
sin cos cot cos cos sin

sin

cot
sin sin cot cos sin cos

sin

sin cot cos

 

 



 

  

 



   

   




       




      



   

 

   

   

 

     

     

   

 (3) 

Independent Killing vectors are 0, 1, 2 and 3. Others are obtained as the commutator of 

the later. Besides the invariance under Killing vectors, we have invariance under local 

Lorentz transformations which form is fixed and the only non-zero are given by 

 
23 34sin sin

, 
sin sin

 
 

 
    .  

3.2. Form of the vielbein and spin connection 

Invariance under Killing vectors greatly restricts the most general form of the vielbein 

and spin connection. 

The most general metric which is invariant under Killing vectors in coordinates 

, , ,( ),µx t r     is of the form 

 2 2 2 2 2 2 2 2 2 2 2 2( sin sin sin )ds N dt B dr r d d d          , (4) 

where functions N and B depend only on r. 

The vielbeins e
i
 are chosen to be of the form 

 

0 1 1 2

3 4

, , ,

sin , sin sin .

e Ndt e B dr e r d

e r d e r d



    

  

 
 (5) 

The most general form of the spin connection is 
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01 02
0 1

03 04
2 2

12 13
3 3

14 23
3 4

24 34
4 4

, _ 2 ,

sin , sin sin ,

, sin

sin sin , cos sin sin ,

sin cos sin , cos ,

A dt A dr A d

A d A

A d A d

A d d A d

A d d A d d

  

     

    

         

         

  

 

 

  

    

 (6) 

where Ai are arbitrary functions of the radial coordinate. 

3.3. Solution 

Solution to the equations of motion (1) and (2) with the most general form of the 

vielbein (5) and spin connection (6) is found by straightforward computation with the use 

of computer assistance. 

A solution exists only if functions N and B are equal and there are two solutions one 

of which is a well-know Boulware-Deser black hole (Boulware and Deser, 1985) and the 

other is 

 

2
2 2 21 2

2
2 1

16
( )

8 7

C r
N B r r

r

 

 
     . (7) 

The solution for the functions that determine the spin connection is as follows 

 

1 2 3

1
0

2

20
4

1

0,

,

1 2 .

A A A

A r C

A r









  

 

 

 (8) 

Constants Cand r+ characterize the solution. For simplicity, we take C = 0 in the 

following analysis of the properties. This solution exists only if the constraint between 

parameters holds 

 
2
1 0 212 0    , (9) 

and if the ratio 1/2  is negative. From the formula (7) we see that the metric of the black 

hole is asymptotically Anti de Sitter. 

3.4. Properties of the solution 

For the definitions and properties of curvature and torsion invariants see reference 

(Obukhov, 2006). Now we will give the results for the most important invariants of the 

black hole. 

The scalar Cartan curvature is of the form 

 1

2

2
R




  . (10) 
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The scalar Riemann curvature is given by 

 

8
1 2

2 8
2 1

12 3
( 5 )

2

r
R

r r

 

 

    . (11) 

The quadratic torsion invariant is 

 

8
1

8
2

3
( ) (1 )

2

i
i

r
T T

r




    . (12) 

From these invariants, we conclude that there is a singularity in the center of the black 

hole. An interesting point is that singularity is not visible in the Cartan curvature invariant but 

in the torsion invariant, which is an unusual property. 

Next, we turn to the thermodynamics of the black hole and give the results for its 

temperature and entropy. 

The temperature of the black hole is given by 

 
2

1

2

( )

4 4

N
T r



 



   . (13) 

The proportionality of the temperature to the radius of the event horizon is not common 

for the black holes with a spherical topology of the event horizon, except in the case of 

three dimensions, and it is a nice illustration that interesting things can happen in 

alternative theories of gravity. 

The entropy is calculated in the semi-classical level, by calculating the Euclidean partition 

function which has an interpretation of free energy, and it is concluded that it vanishes 

 0S  . (14) 

This result is very interesting because it is drastically different from the one in general 

relativity. As such it is a good check for any entropy formula. Also, because it is expected 

that the explanation of black hole microstates is universal, it is puzzling why this solution 

has such a low number of states compared to black holes in general relativity. 

To every Killing vector i, we can associate conserved charge Q(i), the charges are 

calculated in the original reference using the Nester formula (Nester, 1991) and it is 

obtained that all charges are zero 

 ( ) 0iQ   . (15) 

4. BLACK RING 

This section is based on the results obtained in the reference (Cvetković and Simić, 

2016). 

4.1. Ansatz 

The search for a new class of solutions is inspired by Canfora et al. (Canfora et al., 

2007), who found a solution of the type AdS2  S
3
 when the coefficients in the Lagrangian 

satisfy the relation 
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 2
1 0 212 0    . (16) 

We shall now construct another class of solutions of the ”complementary” type 
3 
 S

2
, 

where 
3
 is a three-dimensional space-time and S

2
 is a two-dimensional sphere. We start 

from the following ansatz for curvature 

 
3 4

34 3 4

2
0

,

0,

1
,

ab a b

a a

R qe e

R R

R e e
r



 

 

 (17) 

and torsion 

 
3 4

,

0.

a abc
b cT p e e

T T



 
 (18) 

In the ansatz we have three real number q, r0 and p which are a priory arbitrary before 

substituting the ansatz in the equations of motion (1) and (2), which will lead to a relation 

among them. We decomposed the indices a,b,c... = 0,1,2 and 3 and 4 which are written 

explicitly, and we also defined 34abc abc  . 

4.2. Solution 

The three-dimensional space-time remains arbitrary after substituting the ansatz in the 

equations of motion, but there is only one reasonable black hole solution in this number 

of dimensions which is a BTZ black hole with(-out) torsion (Garcia et al., 2003; 

Obukhov, 2003). Because of this, the vielbein takes the following form. 

 

0 1 1 2

3 4
0 0

, , ( ),

, ,

e Ndt e N dr e r d N dt

e r d e r sin d



  

   

 
 (19) 

where the functions N and N are given by 

 
2 2

2

2 2 2
2 ,

r j j
N m N

l r r
     . (20) 

We introduced the AdS radius in the following manner 

 
2

2

1
q

4

p

l
  , (21) 

and m and j are parameters of the solution which are related to mass and angular 

momentum, respectively. 

The spin connection is of the form 

 
34

,
2

cos ,

ab ab abc
c

p
e

d

  

  

 

 

 (22) 
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where  
ab

 is the Riemann spin connection given by the following expressions 

 

01

2

02

2

12

,

,

.

r j
dt d

rl

j
dr

Nr

Nd

 



 

  

 



 (23) 

As previously stated, the equations of motion introduce a relation among the parameters 

in the ansatz, which reads 

 
2

0

1

2
q

r
  . (24) 

Also, as usual for the solutions with torsion of Lovelock gravity, a solution does not exist 

generally but in the sector of the theory in which a constraint between the coefficients in 

the Lagrangian holds 

 2
1 0 2α 8α α 0  . (25) 

4.3. Properties of the black ring 

The black ring as the product manifold of a BTZ black hole and a two-dimensional 

sphere inherits their Killing vectors. The complete set of Killing vectors consists of those 

originating from the BTZ black hole 

 0 1  , t      , (26) 

and those inherited from the sphere 

 2 3 4  ,   sin cot cos ,  cos cot sin                      . (27) 

For every Killing vector, we have conserved charge Q(i), the charges are calculated 

in reference (Cvetković and Simić, 2016) using the Nester formula and, as in the previous 

solution, it is concluded that all the charges are zero 

 ( ) 0iQ   . (28) 

This is even more striking than in the case of a spherically symmetric black hole for 

which, because it does not rotate, only zero mass was an unexpected result. Namely, the 

black ring is a five-dimensional generalization of a rotating BTZ black hole which has 

non-zero angular momentum in three dimensions but, as we see, the black ring has a 

vanishing angular momentum nonetheless. 
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5. CONCLUSION 

In this paper, we gave a short review of two black hole solutions that exist in five-

dimensional Lovelock gravity. 

First, we reviewed a spherically symmetric black hole. We explained what its Killing 

vectors are and what is the most general form of the metric and spin connection 

compatible with them. Afterward, we presented the solution itself and gave its properties. 

An interesting property is that all conserved charges vanish, which means that the mass 

of this solution is zero, too. This is a peculiar property which is in conflict with our 

intuition that black holes are made by the collapse of ordinary matter. Another peculiar 

property of this black hole is zero entropy. The vanishing entropy in the semi-classical 

approximation does not imply that the entropy calculated in full quantum theory is zero. 

It tells us that the entropy is much smaller than expected by the factor 1/ G , which 

immediately leads to the conclusion that this black hole has far fewer microstates than the 

usual black hole with non-vanishing entropy in the semi-classical approximation. For this 

reason, the solution is very interesting as a consistency check of every proposal for the 

black hole micro-states. 

Second, we constructed a black ring with torsion which is a black hole which horizon 

of events does not have a spherical topology but the topology S
1
  S

2
. This is the reason 

for its name. The black ring also has all charges equal to zero, including its mass and 

angular momentum. This is, again, counter-intuitive, even more, if we take into account 

that this solution is nothing more than a rotating BTZ black hole times a two-dimensional 

sphere. Because a rotating BTZ black hole possesses mass and angular momentum, it is 

not clear what makes black rings so different from it. 
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ZANIMLJIVE PETODIMENZIONALNE CRNE RUPE  

U ovom radu ćemo proučiti dve crne rupe koje su rešenja petodimenzionalne Lavlokove 

gravitacije. Ova rešenja su karakterisana nenultom torzijom i interesantnom osobinom da su svi 

njihovi očuvani naboji nula. Prvo rešenje je sfernosimetrična crna rupa sa torzijom koja takođe ima 

nultu entropiju u semiklasičnoj aproksimaciji. Drugo rešenje je crni prsten, koji je petodimenzionalna 

generalizacija BTZ crne rupe sa torzijom u tri dimenzije. 

Ključne reči: crna rupa, torzija, alternativne teorije gravitacije 
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Abstract

We study the geodesic motion of massive test particle in the presense of the
torsional plane-fronted (pp) wave in the three-dimensional (3D) gravity. The idea
of this investigation is to test the appearance of the memory effect for the torsional
waves. Our analysis discovers that the velocity memory effect happens for all waves
that go to zero as, retarded time, u goes to infinity at sufficient fast rate.

1. Introduction

Does some observable change occur when a gravitational wave passes thr-
ough a system of test particles in Minkowski spacetime? The answer is
affirmative and is know as the gravitational memory [1, 2]. This is the
effect that happens when a gravitational wave passes through a system of
test particles, in asymptotically flat spacetime, which are initially at rest.
If, after the passage of a gravitational wave, permanent displacement of
particles occur we call this displacement memory effect [1, 2, 3, 4] and if
particles have non-zero relative velocity we call it velocity memory effect [5,
6, 7]. This is important effect because it represents a possible experimental
set up for the detection of gravitational waves and investigation of their
properties.

In this article we will analyze the geodesic motion of massive test par-
ticles in the background of the pp wave with torsion. The reason why we
undertook this investigation is to see is there a memory effect for grav-
itational waves with torsion in the Poincaré gauge theory [8, 9, 10]. To
investigate this we will use the solutions with propagating torsion [11]. Im-
portant thing to note is that gravitational pp waves in 3D are solutions
which do not exist without torsion [11], meaning that in the absence of
torsion metric becomes trivial. This offers us an interesting opportunity to
study the effects of torsion at the level of geodesic motion.

∗ This work was partially supported by the Serbian Science Foundation under Grant
No. 171031.
† e-mail address: dsimic@ipb.ac.rs
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The paper is organized as follows. First, we review pp waves with-
out torsion in three dimensions and show that this solutions do not exist
in 3D general relativity. After that, we analyze the pp waves with tor-
sion in 3D Poincaré gauge theory of gravity. Next, we derive the geodesic
equations for the metric of the pp wave with torsion. Unfortunately, the
geodesic equations cannot be solved analytically except in a very special
case, which is not interesting from the aspect of memory effect because it
is not asymptotically flat. Due to this technical problem we had to solve
geodesic equations numerically and results are given as plots of velocity in
a function of retarded time u.

Conventions we are using are the following. The Latin indices (i, j, ...)
refer to the local Lorentz coordinates and run over (0, 1, 2). The spacetime
indices are denoted with letters of Greek alphabet. The contraction of
vector with a form we label with . The ei is triad 1-form and the dual basis
hi is defined by the following equation hi ej = δji . For the Hodge dual we

use the standard symbol ?, and the Hodge dual of triad is ?ei = 1
2ε
ijkejek.

The exterior product of forms is implicit in all formulas.

2. The pp waves without torsion in three-dimensions

To better understand the nature of the pp waves with torsion we start with
the Riemannian pp waves. For more details see Ref. [11].

The metric of the pp waves in Brinkmann coordinates is

ds2 = 2du(Sdu+ dv)− dy2 , (1a)

we, also, introduce an auxiliary function H

S =
1

2
H(u, y) . (1b)

From the metric it is easy to derive the form of the triad ei so that ds2 =
ηije

i ⊗ ej holds, where ηij is the half-null flat metric

ηij =

(
0 1 0
1 0 0
0 0 −1

)
.

The triad is given by

e0 := du , e1 := Sdu+ dv , e2 := dy , (2a)

The dual frame hi define by the requirement hi ej = δji , where is a label
for contraction, reads

h0 = ∂u − S∂v , h1 = ∂v , h2 = ∂y . (2b)
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Starting from the general formula for the Riemann connection

ωij := −1

2

[
hi dej − hj dei − (hi hj dek)ek

]
,

we derive that the only non-zero component is

ω12 = −∂yS e0 . (3a)

From the above connection the Riemannian curvature is easily obtained

Rij = 2e0k[iQj] , (4a)

where ki = (0, 1, 0) is a null vector and

Qi = ∂2
ySe

2δi2 . (4b)

The Ricci 1-form Rici := hm Ricmi is given by

Rici = e0kiQ , Q = hi Qi =
1

2
∂2
yH, (5a)

while the scalar curvature is zero

R = 0 . (5b)

Up to this point discussion was valid for any theory of gravity, now we
want to look at what happens in general relativity in 3D. Action of general
relativity I = −a0

∫
d3xR leads to the vacuum field equations

2a0G
n
i = 0 , (6)

where Gni is the Einstein tensor. Einstein equations, after substitution of
the metric, give

∂2
yH = 0 , (7)

which only has a trivial solution

H = C(u) + yD(u) ,

due to the fact that the curvature identically vanishes and this solution is
diffeomorphic to Minkowski spacetime. This is to be expected because gen-
eral relativity in three-dimensions does not have propagating local degrees
of freedom and consequently should not have a wave solution.
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3. The pp waves with torsion

The theory we will consider is a quadratic Poincaré theory of gravity which
generalizes general relativity with 6 additional quadratic terms and as many
free parameters a0, . . . , a2 and b0, . . . , b2. We will not write the action
interested reader can find more details in Ref. [11].

The pp wave with torsion is a generalization of Riemannian pp wave
which is obtained under assumption that the triad field (2) remains un-
changed, while the connection takes the form

ωij = ω̃ij +
1

2
εijmk

mkne
nG , (8a)

G := S′ +K . (8b)

The function K = K(u, y) is added to account for the effect of torsion,
which is seen from the following expression for torsion

T i := ∇ei =
1

2
Kkikm

?em . (9)

The curvature 2-form, Ricci 1- form and Ricci scalar are given by

Rij = εijmkmk
n?enG

′ ,

Rici =
1

2
kikme

mG′ ,

R = 0 . (10)

The geometric configuration defined by the triad field (2) and the connec-
tion (8) represents a generalized gravitational plane-fronted wave of GRΛ,
or the torsion wave for short. The vector field k = ∂v is the Killing vector
for both the metric and the torsion; moreover, it is a null and covariantly
constant vector field. This allows us to consider the solution (12) as a
generalized pp-wave.

The field equations [11] are given by

a0G
′ − a1K

′ = 0 , Λ = 0 ,

K ′′ +m2K = 0 , m2 =
a0(a1 − a0)

b4a1
, (11)

with G = S′ +K and S = H/2. The solution of this equations is

K = A(u) cosmy +B(u) sinmy ,

1

2
H =

a1 − a0

a0m
(A(u) sinmy −B(u) cosmy) + h1(u) + h2(u)y .(12)

As we already said the h1 and h2 do not contribute to the radiation part of
the curvature and can be discarded as trivial solution. Consequently, when
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the torsion is not present the metric becomes trivial. This is to be expected
since general relativity in three-dimensions is a theory without propagating
local degrees of freedom. Because the metric is crucially related to the
torsion we can extract information about the torsion already on the level
of the metric and geodesic motion.

4. Motion of massive test particle

In this section we investigate the geodesic motion of massive test particle in
the presence of the massive pp wave with torsion described in the previous
section. The geodesic motion of the test particle is obtained by solving a
geodesic equation in which appear Christoffel (Riemannian) connection. So
first we have to find the Christoffel connection for the metric of the masive
pp wave with torsion.

4.1. Christoffel connection

The Christoffel connection is easily derived from the metric using the well
known formula

Γ̃µνρ =
1

2
gµα (∂νgαρ + ∂ρgαν − ∂αgνρ) , (13)

and its non-zero components are given by

Γ̃vuu =
1

2
∂uH ,

Γ̃vuy =
1

2
H ′ , Γ̃vyu =

1

2
∂yH ,

Γ̃yuu =
1

2
∂yH . (14)

Let us note that existence of a non-trivial metric of the pp wave is due to
the presence of torsion. This allows us to see effects of torsion on the level
of metric and, consequently, in geodesic motion of test particles [12].

4.2. Geodesic equations

The geodesic equation for u is

d2u

dλ2
= 0 . (15)

Consequently, we take u ≡ λ.
The equation for y reads

ÿ +
1

2
∂yH = 0 , (16a)
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after substitution of explicit form of the function H it becomes

ÿ +
a1 − a0

a0
(A(u) cosmy +B(u) sinmy) = 0 . (16b)

The equation for v is

v̈ +
1

2
∂uH + ∂yHẏ = 0 , (17)

or explicitly

v̈ +
a1 − a0

ma0
(A′(u) sinmy −B′(u) cosmy)

+
a1 − a0

a0
(A(u) cosmy +B(u) sinmy)ẏ = 0 , (18)

4.3. Velocity memory effect

The velocity memory effect is present in the case when functions A(u) and
B(u) vanish for large u. For numerical calculations it is better to introduce
functions Ā(u) = a1−a0

a0
A and B̄(u) = a1−a0

a0
B(u) which we will use later

in the text instead of A(u) and B(u). The velocity changes as one changes
initial conditions, so this is a true observable effect. We do not show plots
for different initial conditions because we wanted the presentation to be as
short as possible.

4.4. Shockwave case

In the shock wave case when functions Ā(u) = 0 and B̄(u) vanishes expo-

nentially B̄(u) = e−(u−10)2 numerical solutions of the geodesic equations
gives the plots [12]for the particle velocities ẏ and v̇ shown in the Figure 1.

4.5. Slow fall off

In the case when Ā(u) = 0 and B̄(u) = 1/u numerical solutions lead to the
following plots [12] for the particle velocities ẏ and v̇ shown in the Figure
2.

5. Conclusion

We investigated a motion of massive test particles in asymptotically flat pp
wave spacetime with torsion. The meaning of this is that test particle is
initially well described by a particle in Minkowski spacetime and at some
point a pp wave passes by and at time-like infinity a particle is again well
described by its motion in Minkowski spacetime. Consequently, proper-
ties of particles motion at initial time and at infinity can be consistently
compared.
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Figure 1: The plot for the particle velocity ẏ and v̇ in units m = 1, for

B̄ = −e−(u−10)2

The conclusion is that velocity memory effect happens both for the ex-
ponentially fast fall-off of the gravitational wave as well as for the arbitrary
polynomial fall-off. For the related work on memory effect for massive
gravitons see Ref. [13]. This is the first time the memory effect for gravi-
tational waves with torsion is analyzed. To authors knowledge, this is also
the first example of the memory effect in three-dimensional gravity.

In the last few years there was a lot of effort on connecting asymptotic
symmetries, soft theorems and memory effect [14]. This approach based on
BMS symmetry offers a new perspective on the black hole microstates and
information loss [15]. It is an open problem to connect the memory effect
described in this article with asymptotic symmetry of the theory.

It is very interesting to generalize the analysis of this paper to the pp
waves in four dimensions [16]. Preliminary results [17] show that most of
the conclusions of this paper transfer to the four-dimensional case. This
is important effect because it offers a possible experimental set up for the
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Figure 2: The plot for the particle velocity ẏ and v̇ in units m = 1, for
B̄ = −1/u

detection of torsion.
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