HayuHom Behy UHcTUTyTa 332 PU3uKy, beorpapg,

HHCTUTYT 3A ®H3HUKY
NMPUMIBEHO: 03 -U- 6o
Pag.jen. 6poj Apx.wucpa | Mpunor

OR0A-| |G [1

beorpag 31.01.2025

Mpeamet: Monb6a 3a noKkpeTtare pensbopa y 3sarbe BULLU HaYUHU

capagHuk 3a Hukony 3. lNMetposuha

Monum HayyHo Behe MHcTMyTa 33 dU3KKy Aa y cknagy ca MpaBUAHUKOM O NOCTYNKY U HAYUHY

BpeaHOoBarba N KBAHTUTUBHOM UCKa3uBakby HaY4YHO-UCTPAXMBAYKUX pe3yanTaTa UCTPaXKnBada

NOKpeHe NocTynak 3a moj pensbop y 38atbe BULLM HAYYHU CapafHUK.

Y npunory gocras/bam:

1.
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Muw/berse pyKoBoAMOLA NPOjeKTa ca Npeaorom Komucuje 3a pensbop y 3sarbe 1
NoTBPAOM O pyKoBohery 3a4aTKoM

CtpyuHy 6uorpadujy

Mpernep HayyHe aKTUBHOCTH

EnemeHTe 3a KBa/IMTAaTUBHY OLEHY Hay4yHOr A0npuHoca

EnemeHTe 33 KBAHTUTATUBHY OLEHY Hay4HOTr 40NpuMHOCa

Cnucak 0bjaB/beHUX paaoBa U HUXOBE Konuje

NopaTke 0 UMTUPAHOCTU pagoBa

doToKonNujy AO0KyMeHTa 0 u3bopy y cagalire 38are

Ca nowtoBatem,

Honore Teplitc

Ap Hukona 3 Metposuh,

BULIN HAay4YHU CapagHUK

MHcTuTyT 33 dM3unKy, beorpag,
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Hayuynom Behy UHcTuTyTa 32 busuky y Beorpagy

MNpeamer: Muwmere PyKoBoguoua naboparopuje 3a peusbop ap Hukone
Nertposuha y 3arse Buwy Hay4YHu capagHuk

®anykretom 3a HayKy u urbxerbepuHr Xamag buH Kanuda YHuBepautera y Karapy, HeKapawmer Tekcac
A&M yHusepsutera y Karapy, npeko kor je capahusao ca HEKO/IMKO Benukux umenHa Y 10j 06nactu wupom
cserTa.

Ap Hukona Metposuh ucnywasa cse KpuUTepujyme nponucane MNpasunxukom sa u36op y HayyHa 3Barba
Munucrapcersa Hayke, TexHonowkor passoja u MHOBaUuja, Te cam carnacan 3a peusbop ap Hukone
Netposuha y 3same Buwm HayyHu CapagHuK.

Mpeanaxem ga KomMucujy 3a pensbop Ap Hukone Netposuha Y 3Batbe BULIN HayYHU capagHuK ynHe:
: 4p Munan Netposuh, Hayynu CaBeTHUK MHCTUTYTA 32 dusuky y beorpaay
2. Ap Anekcangpa Crpuruh, HaY4YHM caBeTHUK WHcTuTyTa 32 dusmky y Beorpagy

3. AP Xemko WreusaHyaHuH, AONUCHU yYnaH CAHY u HAY4YHU caBeTHuMK Hykneapnor MHCTUTYTa
Bunuay Beorpagy

Beorpag, Pykoao,qunaq npojekra

31.01.2025 Merazy WM

AP Munan Metposuh

Hay4YHu caBeTHuK

WHctuTyT 33 busunky




3. CtpyyHa 6uorpaduja kKaHgmpata Hukona 3 Nerposuh

Hukona Netposuh je pohen 12. 03. 1980. roanHe y beorpaay.

3aBpwuno je MatemaTtnuky N'MmHasmjy 1999. roanHe Kao y4eHUK reHepaumje ca npocekom 5.00.
Y I'MMHasuju ce TaKMMUYMO Ha TaKMUYEHMMA M3 GU3MKE M MATEMATMKE Ha CBMM HMBOMMA
HAUMOHANHMX TaKmMyera. Ha mehyHapogHUM TaKMMUYeHUMA je OCBOjUO BULIE MeAa/ba Of
Kojux Tpeba wu3gBoOjuTM aBe cpebpHe U jeaHy OpoH3aHy Mepasby Ha MehyHapogHUm
oNMMNMjalama W3 maTemaTuke. 3axBasbyjyhu TuUmM ycnecMma nocTao je CcTUneHaucra
MwuHMCTapCTBa 33 HayKy M TEXHONOLWKMK PasBoj.

Annnomnpao je Pu3MKy U matemaTuky y jyHy 2003. rogmHe Ha MacayyceTc MHCTUTYTY 3a
TexHonorunjy (Massachusetts Institute of Technology) ca npocekom 4.5 (Ha ckann og O go 5).
Annnomcku pag je 6Mo Ha TeMy KOA0Ba 3a UCNpaB/bakbe rpellaka y KBAaHTHUM KOMMjyTepuma:
“Constructing an Infinite Class of Perfect Codes”, ca oueHom B (9). MeHTOp je 6uo npod. Ucak
YyaHr (Isaac Chuang).

ObjaBro je ca jow Tpu KoayTtopa Kwury “The IMO Compendium” ca cBMm 3agaumma
npeanoXeHMm Ha MehyHapoaHUM MaTeMaTUYKUM onnumnujagama (CnpuHrep-Bepnar, bepauH,
2006, apyro uspawe 2011). Ayroroamiitbun je capagHuk UcTpasknBadkor ueHTpa MeTHuua u
ynaH [prKaBHe KOMMUCUje 32 TaKMUYEHA U3 MaTeMaTuKe. Kao 4iaH Komucuje 3a Takmmyerwa m3
dU3MKe y4eCcTBOBAO je Yy NPUNPEMM U OLLEHM 3a4aTaKa Ha HaUMOHA/HUM TaKMUYEHNMA.

Op 2004. rogmnHe Hukona MNetposuh je y pagHom ogHocy ca MHcTuTyTOM 33 UMKy y beorpaay.
Hberos crtaTtyc je 3amp3HyT og asrycta 2005. rogMHe Kaga ognasu Ha Tekcawku A&M
yHuBep3uteT y Katapy (Texas A&M University at Qatar), og 2024. roguHe npeuHayeH y
daKkynTeT 3a Hayky U UtbKerbepuHr Xamag buH Kanuda yHuBep3uTeTa, rae je 3anocneH Kao
NlabopaTopujcKM KoopaMHaTOp M paan Takohe Kao acucteHT cee Ao jyna 2012. rogmHe, Kaga ce
Bpaha y UHcTUTYT 33 ®Pu3mKky. Y centembpy 2012. roanHe je nsabpaH y 3Barbe UCTpaKuMBaya
capagHuKa. [IOKTOpPCKy aucepTauumjy nof HacnoBom: “TayHa TanacHa M CONIMTOHCKA peluetba
reHepanucaHe HenuHeapHe LlpeauHrepose jeaHauuHe” je opbpaHuo 16. okTobpa 2013.
roanHe Ha Pusnukom dakyntety YHuBep3nuteTa y beorpagy.



Y 3Batbe Hay4yHW capagHuWK M3abpaH je 3. Maja 2014. Y beorpagy. Y 3Batbe BMLIEr Hay4yHOr
capagHuKa u3abpaH je 10. 06. 2020 roauHe. AHraxoBaH je Ha npojekty 171006 nogp
pykoBogctBom aAp [JywaHa JoBaHoBuMha ''HennHeapHa AMHamMMKa  JIOKaAM30BaHUX
CaMOOPraHU30BaHUX CTPYKTYpa Yy MA3a3MKW, HaHO-KOMMO3UTHUM MaTepujanmma, TeYHUM WU
GOTOHUYHMM KpUCTaIMMa M yATpaxnagHMM KoHAeHsaTuma' u uynaH je Jlabopatopuje 3a
HennHeapHy ¢u3nKy UHCTUTYTa 32 PU3KKY.

OxKembeH je ca cynpyrom TawaHom 1 uma agoje geue: bopuca n Emmnnnjy.

4. Hukona 3 MNMetposuh: Mpernea HayyHe aKTUBHOCTU

4.1 OnwTtn noaaum o aktueHoctuma Hukona 3 Merposuha

Mopa pykoBoacTBom MeHTOopa npod. ap Munusoja bennha, Hukona Metposuh je noyeo 2005.
rogmHe aa ce 6aBu M UCTPaKMBaHbUMa Y HENMHEAPHO] ONTULM.

Hukona Metposuh ce 6aBM NPOHANAXKEHEM Er3aKTHUX PELLEHA 33 LUMPOKE K/1ace HeIMHeapHMUX
€BOIYTUBHUX NapumnjanHux gudepeHumjanHux jegHadymHa, yrnaBHom Kopuctehu ce metogom
eKcnaH3uje no JakobujeBum ennntnuknum dyHkumjama. OBaj meTod NpUMMeHeH je gocag Ha
HEeKO/IMKO 06/1nKa HennHeapHe LWpeauHrepoBse jegHaudmHe, Ha jeaHauynHy Fpoc-MuTaeBcKor Kao
M Ha MHore gpyre cucreme. Takohe, gocag je KOpuctMo u Xupota MeToay M y3 TO pagmo
NINHeapHy aHanusy ctabuaHocTM A0bujeHUX pellera. TPeHYTHO je aHra)koBaH Ha MNpPOjeKTy
MwuHuMcTapcTBa npocseTe 1 Hayke OU 171006 nog pykosoactsom ap MunaHa MeTtposuha.

Hukona MeTtposuh je nocag objasmo 23 paga y yrnegHnm mehyHapoaHum yaconncuma (M21a,
M21, M22, M23), oA, Kojux je jeaaH objaB/beH y npecTuskHom Yaconucy Physics Review Letters.
YKynaH 6poj uMTtaTa Herosux pagoBa Ao caga je ykynHo 604, npema ISI Web of Knowledge.

BarkHO je nopen Hay4yHUX pe3ysTaTta HaNOMeEHYTU U BULLIEroAuLHbU NeJarowkm paa ap Hukone
MeTpoBmha Kao acucteHTa Ha Tekcac A&M yHuBep3uTeTy, rae je 3a 7 reHepaunja ctyaeHaTa
Aprkao Bexxbe n nabopatopujy U3 mexaHuKe, enekTpoMarHeTuke n moaepHe epusmke. Y Toky
CBOT MUCTpa)KuBaykor paaa, ap Hukona Metposuh je Takohe 6GUO U MEHTOP HajTa/IEHTOBAHUjUM
CTYAEHTMMA, KOju cy nof okpubem npod. ap Munusoja bennha gobunmn npuavky aa ydecrsyjy
Y HAY4YHOM UCTPaXKMBatby M Byay Ko-ayTopu Ha HUKOAMHUM pafoBUMa.



Hukona MeTposuh je TpeHYTHO 3aNOCNEH KAao BULLM Hay4yHU CapagHUK y MHCTUTYTY 32 PU3KKY y
NabopaTopujn 3a HeAnHeapHy GU3MKY.

4.2 AKTMBHOCTM Npe u3bopa y 3Barbe BULUM HAy4YHU CapaHUK M ONUC HeroBuxX A0NpUHOCa

Y osom geny hemo npeactasuTy HaydHy akTMBHOCT Ap Hukone MNetposuha, y3 HanomeHy aa cy
6pojesn pedepeHLLe KOH3UCTEHTHN Ca KOHAYHOM JIMCTOM PafoBa M3 cekumje 7.

HuKona Metposuh ce y cBom paay 6aBMo NnpumeHOM M MoAUPUKALMjOM TaKo3BaHE MeToae
pasBoja no JakobujeBum ennnimyHMmM ¢yHKUMjama, Y UW/by NpPOHana)kewa HOBMX Knaca
€r3aKTHUX W QHANUTUYKUX pelierba  MYATUAMMEH3UOHUX TEeHEePaAsIMCAHUX HEeAUHeapHUX
LWpeanHrepoBmx jegHaunHa, Kao M Apyrux jeaHadymHa. K/bydyHu gonpuHoc KaHaugarta je 6una
reHepanunsaumja metoge JakobumjeBux ennNTUUYHUX PyHKUMja Ha HenunHeapHy LpeauHreposy
jeAHaunHy ca KybuyHom HenuHeapHowhy y 3 ammeHsuje [3], Koja je [oTaf NpPETXoAHO
npuMerbeHa Ha 2 AUMEH3uje, y paay y Kojem je u Hukona MNetposuh 6mo ykbydeH [2]. Pag y
KOMe cy OBW pe3ynTaTu npe3eHToBaHW je objaBsbeH y Physical Review Letters u noctao je
BMCOKO LUTUPAHW paj Koju je 0TBOPMO Leny jeaHy nogobnact matemaTtnuke ¢pusunke. obujeHu
CY U TAMHU U CBET/IIN CONUTOHM, Y 06a cayyaja ca u 6e3 npoctopHor ympna. KoHTpoanwyhu
napametap Jakobujesnx dyHKUMja 0OKNja ce CONUTOHCKKM Tanac Kao rpaHUYHK Cay4daj pellera
Koja onucyjy 6eckoHayaH Hu3 nyTtyjyhux Tanaca. [JobujeHa pelwerwa UMajy BENUKY
bGNEeKCMBUMNHOCT Yy 3aBUCHOCTM Of, MapameTapa jegHauduHe: KoeduumjeHaTa aundpakumje,
HeNMHeapHOCTM, U rybuTaka; jeAMHO jeaaH of, TpPU napameTpa mopa 6uTn aeduHUcaH y
dYHKUMjM ocTannx. 3a pas3siMKy of NPeTXoAHMX pagoBa ca jeiHaYMHOM Yy 2 AMMEH3Nje, Y OBOM
HOBOM paay je ynora umpn GyHKLMje KOHAYHO pasjalltbeHa.

Y HapeaHMM pagoBMMa je MeToaa JakobunjeBux ennnTuyHnX pyHKumMja mogmduKkosaHa aa bm ce
NpOHaLL/a peLlera 3a Cyvyaj HopmaaHe gucnepsuje, Koju MMma MHOro WPy GU3NYKY NPUMEHY
Of, C/ly4aja aHOMasIHe Aucnepsuje 1 Koju aoTan Huje 6uo ypaher [4]. Op MNetposuh je oTKpmo
Ha KOju HauMH Aa ce NpomeHu 0B6AMK pellerba Kako 6u ce y3ena y 063up aHTU-cMMeTpuUja
BPEMeHa y OfHOCY Ha OCTasne TpaHcBep3He Bapujabne. Mako ce GU3MUKM cUCTEM HOpManHe
Aucnepsunje KBaJIMTAaTUBHO 3HATHO Pas/iMKyje of Cay4vaja aHOMasIHE Aucneps3nje, NOKasano ce
Aa ce MoanPUKaLMjOM CamMO HEKONMKO napameTapa mory gobutm pelera U 3a 0Baj CAyyaj.

MeTtoga JakobujeBux enunTUYHUX OJyHKUMja je 3aTMM reHepasiMcaHa Ha cucTeme ca
He/NMHeapHoLwWhy BULLEr cTeneHa, NPUrogHoOM moguduKaLnjom cTeneHa pelwena. Y3 ogpehere
cneumduyHe ycnose npoHaheHa cy CONUTOHCKA pellerba U 33 KYOMUYHO-KBUHTMYHM (qubic-
quintic) n 33 KybMYHO-KBMHTUYHO-cenTMYHKM (qubic-quintic-septic) mopen [6]. Oso
UCTPaXKMBakbe je OTBOPWUAO MOTyhHOCT eBEeHTYa/IHOT Hanakera pellerba ca caTypabuaHom



HennHeapHowhy.

MNotom je Hukona MeTpoBuMh npumeHMo metody Ha jeaHauuHy [poc-Mutaesckor (Gross-
Pitaevski), Koja wuma 06nuK HenuHeapHe LUpeauHrepoBe jegHauMHe ca  YK/bYYEHUM
napabonanyHum noteHuujanom [5]. Hukona MeTpoBuh je yctaHOBMO Aa je Hajnpe noTpebHo
pewnTn TakosBaHy Pukatujesy (Riccati) audepeHumjanHy jeaHaumHy aa 6u ce nobuNo pellerse
jeaHaumHe Mpoc-Mutaesckor. C 063Mpom Ha To Aa je Pukatnjesy jegHauymHy Hemoryhe pewmntm y
OnwTeM CAy4ajy, KaHANAAT je UCTPAXKMO CAy4YajeBe KOoju MMajy No3HaTa pelwerba a o4 GUNYKor
Cy 3Hayaja. 3a KOHCTaAHTHe BPeAHOCTN NnapameTpa gudpaKkumje 1 jaunHe noteHumjana gobuo je
pelera Koja onagajy Man nmajy CMHrynapuTeT 1 yTBPAMO Aa je pellersa Koja onagajy moryhe
CcTabnnnsosBaTn A0AaTHUMM Hanajakbem eHepruje (gain) y TayHo oapeheHoj mepu. Ca apyre
CTpaHe, 3a CUHycoMAHW o06AMK napameTpa gudpakuvje M jaunmHe noTeHuujana [obuo je
CTabuiHa TanacHa M CONUTOHCKA peluersa [7].

Op Metposuh n ctyaeHT AHac An Bactamu, Kome je HMKkona 6M0 MeHTOp, cy yTBpAUAM Aa je
moryhe 3a KomnauKoBaHuje 0b6aMKe napameTapa cBecTM PuKaTujeBy jeaHauYMHy Ha pelumsy
JNINHeapHy jeAHAuYMHy APYror cTeneHa, y KoM cayyajy ce gobuja WnpoKa Knaca HOBUX pellema
jeAHaunHe T[poc-MWTaeBCKM, YK/bYYMBLUM M pewerba 3a cnydaj PewbaxoBe (Feschbach)
pe3oHaHue. Pewera gobujeHa 6M Mmorna MmaTu LWMPOKY NMPUMeEHY ca 063Mpom Ha To Aa ce
jeaHaumHa Tpoc-MNuTaeBckM KopucTM Yy npoyyaBamwy bBos-AjHwTajHoBux (Bose-Einstein)
KoHZeH3aTa [8,9].

KaHguaat je pasbe y capafghbum ca cTygeHTom XyceuH 3axpeanHom moaudpuKoBao meToay 3a
CNy4yaj Aa noTeHUMjan Huje napabosnyaH Hero NMHeapaH M y TOM CAy4ajy cy npoHaheHa
pewera 3a KOHCTAaHTHY BpPeaHOCT napameTpa agudpakuuje W jaymHe nMoTeHUMjana, 3a
cMHycouganaH ob/nMK oBa ABa napameTapa, Kao U 3a oba mellaHa cay4aja, Tj. Kag je jeaaH o
napameTapa KOHCTaHTaH a Apyrn cuHycomnaanaH [10].

MeToaa je oa cTpaHe ap lMNeTposuha Takohe nNo NpsBM NyT NPUMeEHEHA U Ha ABOKOMMOHEHTHE,
T3B. MaHaKoB/beBE CMUCTEME, TauyHMWje Ha nap Ko- M KOHTpa-nponarupajyhux tanaca [13].
MpoHaheHa cy pelwera 3a CyYaj Kag je oAHOC yKpwTeHo-dpasHe (cross-phase) n camo-dasHe
(self-phase) mogynauuje jegHak 3. YnpKoc Tome WTO HUje buio moryhe oBom metoaom ao6mutm
onwrTa pewera MaHaKoOB/bEBOI CMCTEMA, CUCTEME Ca OBMM OAHOCOM ABejy Moaynauwuja je
moryhe Hanpasutu.

Op Hukona MeTtposuh y oBom nepuoay gospluno pag [19] y kojem ce aHanmsmpa ctabunHoct
MHOrobpojHMX peluerba Koje je Aobuo metogom pasBoja No JaKobujeBMM enunTUYHUM
dyHKumMjama objasno y sBeh cnomeHyTMm pasosuma nybamkoBaHum y nepuoay og 2008. ao



2011. roauHe. Y capaamu ca Op. HajopaHom Anekcuhem m Mpod. Ap. Munusojem benunhem,
ypaheHa je aHanu3a CTabuaHOCTM peluerba HenuHeapHe LpeguHrepose jeaHaunHe ca
HOPMaJIHOM U aHOMaJIHOM Aucnepsnjom U jeaHauymHe lpoc-MuTajesckor. Hajnpe je ypaheHa
TpaHcdopmaumja Koja HenuHeapHy LpeauHrepoBy jeaHauMHy ca  aucTpubympaHum
KoeduUUMjeHTUMA CBOAM Ha jeAHAYMHY Ca KOHCTAHTHMM KoeduuujeHTMma. 3atum je
KOHCTpyucaH oarosapajyhu JlarpaHxujaH M noa NPeTnocTaBKOM MOCTOjatba MoOAy/lauMOHe
HecTabuaHocTn cy aobujeHe jeaHaUYNHE 3a HUXOBY LENOKYMNHY amMnNAnTyAay, Tj. HeH peanaH u
MMmarMHapaH geo, y pyHKkuMju oa TanacHor 6poja nepTtypbauuja. 3atum je cuctem jegHaumHa
peweH ga 6u ce gobwuno ga nvM NapameTpu AMBEPrvpajy UaAM He U TUMe o4peauno Aa nu
pewera UMajy ctabunHoct. YTBpheHo je ga y CBMM c/y4vajeBMMa peluerba noceayjy wau
ancoNyTHY CTabUAHOCT UM CTAabUAHOCT Y3 NPUCYCTBO TAKO3BAHOT MEHAXMPakba gucnepsuje, Tj.
aNTepHUparba 3HaKa KoeduumjeHTa pgucnepsunje y3 nomoh meTamartepujana. AnconyTHa
CTabuaHoCT je yTBphHeHa y TpU AUMEH3Mje 32 TaMHEe CO/IMTOHEe Y aHOMa/IHOj ANCNep3nuju, 1 3a
CBET/NI€ BPEMEHCKEe COJIMTOHE Yy HOPMAJHOj AUCNEep3unju, AOK je y ABe AUMEH3Mje ancoyTHa
CcTabunHoct ytBpheHa 3a cBe TaMHe coMToHe. OBU pe3ynTaTu cy NPOBEPEHN KOMNjyTEPCKMUM
cMMyfaumMjama M AobuMjeHo je CKOpo MOTMYHO CAarakbe y pewernma 6e3 umpna u n3yseTHo
[06po KBanNUTAaTMBHO Cnarakbe Koje y CBAaKOM Cayyajy noTtephyje Kputepujyme ancosytHe
CTabunnHoCcTM y pewerwnma ca umpnom. [p. Hukona Metposuh je Kao NpBKM ayTop y4e€CcTBOBaO y
CBMM acneKTama OBOr paga OCMM KOMMjyTEPCKMX CUMynaLmja.

Op Hukona MeTtposuh je y oBom nepuoay Hanucao U pag [18] y kome je jeanHun aytop. OH je
reHepasincao CBoje MeToze 3Ha CUCTeEMe HesIMHeapHux LLpeanHreposmx jeaHaunHa rae creneH
He/IMHeapHOCTUN HUje Leo 6poj, Kao M rae NocToje ABa YaHa, jeaaH ca aynao sehum cteneHom
oa apyror. OBo je ypaheHo nomohy TpaHchopmaumje Koja je cBogMaa CUCTEM Ha CUCTEM ca
KoeduumjeHTUMa LenobpojHor cteneHa. MocebHa nakka je nocseheHa Tako3BaHMM KybUUYHO-
KBUHTUYHUM CUCTEMMMA KOZ KOjUX Cy HaheHe BeNMKe Knace HOBMX pellera jep ce cayyaj ca
TUM BpPEeAHOCTMMA WCMOCTaB/ba Kao creuujanaH cnydaj. JobujeHa cy He camo peliea
3acHoBaHa Ha JakobujeBoj eNnNTUYHO] GYHKUMjU, HErO U pellera Koja Cadp’Ke TaKo3BaHU
yupn. HapaBHO, cBe MpopayyHW M pe3ynTaTu y pagy Cy M3BegeHu of cTpaHe [p. Hukone
MeTposuha.

HaKkoH NoYeTHMX pesynTaTa YK/by4YeHUX y HeroBy AOKTOPCKY gucepTaumjy, Hukona Metposuh je
NPOLWMPMO CBOj OMEH paga M Npoaybuo capagby ca Koserama us KuHe Koje ce 6aBe cIMYHOM
obnawhy.

Y capaamu ca npodpecopom Beunuur oHrom (Wei-Ping Zhong), Hukona je yyectsosao y paay
Ha yTBphMBarby NOCTOjatba KOHTPOAMCAHUX MNaPabOANYHO-UMAMHAPUYHUX AMB/bMX Tanaca
(rogue waves) [14]. OMB/bK Tanacu cy TPEHYTHO BP0 aKTye/Ha Tema Yy CBETy He/MHeapHe
ONTUKe (a 1 WKpe) jep HacTajy U3HEeHada U MMajy BEJIMKMU UHTEH3UTET, Te hUXOBO MpPOoyYaBakbe



je jako BUTHO y UW/by yCnelwHe NPUMMEHE HEeNMHEAPHMX ONTUYKNUX cucTema. Y paay cy AobujeHun
AMB/bU Tanacu Ynja amnanTyga je nponopuuMoHanHa NnapaboanYHO-UMAUHAPUYHO] GYHKUM)U.
Op. Hukona MeTposuh je yuecTBOBAO Y HaslaXKeky M NPOBEPU UCMPABHOCTU AATUX PELIEH-A.

3atum je Ap. Hukona lMeTposuh yyecTBOBAO Yy Ayroroauwiboj M NAOAOHOCHO] capaftu ca
¢umsnyapem ms KnHe Cunumjy Cyom (Si-Liu Xu). Y cepuju og Hekonuko pagosa ap HuKona
MeTpoBuh je gao Be/NMKM AOMNPUHOC Y pPeanusaumju maeja, NnpoBepu TA4yHOCTU, NpPaB/beHY
WMAycTpaumja 1 NMcakby pagoBa Koje je 3ajeaHo ca ap Cyom objasuo.

Y paay [15] je kopuwheHa Tako3BaHa camoc/iMyHa TpaHchopmauuja aa 6u ce gobuna pelera
HeNuMHeapHe TpoAuMeH3snoHe LUpeauHrepoBe  jegHauMHe ca  YETBPTUM  CTEMEHOM
HenuHeapHoctTU. [JobujeHn Cy M TaMHM M CBETIM COJIMTOHU Kao pellerba 33 HEKOIMKO
Pa3INYUTUX MATEMATUYKMX 0BNMKa KoeduumjeHTa AndpaKkumje U NpoyyaBaHO je AMHAMMUYKO
noHallakbe CBETNIOCTU y AaTUM CpeauHama.

Y paay [16] cy HaheHa pelera 3a (3+1)-AMMeH3NOHY HennHeapHy LLpeanHrepoBy jeaHauynHy
ca HeuenobpojHMUMm cTteneHom M TakodBaHUM MT (parity-time) cMMeTPUYHMM MNOTEHLMjANIOM.
YpaheHa je TpaHcdopmaumja canMYHOCTM U AobujeHe jegHauYMHe TaKBe Aa 3a CBaakm 06/MK
pewera nocToju ogrosapajyhn noteHuujan TakaB Jda je OpUIrMHasHaa HenauHeapHa
WpeanHrepoBa jeaHaumHa wucnyweHa. OBO oTBapa MoOryhHOCT Hanaxewa pellera
JIOKaNM30BaHMX Y CBUM TPAHCBEP3A/IHUM KOOPAMHATaMa, TAaKO3BAHUX CBET/IOCHUX METAKa.

Y pagy [17], HaheHa cy pewera HenmnHeapHe LpeanHrepose jegHauynMHe 4eTBPTOr CTEMeHa Y
UMANHAPUYHUM KOOpAMHaTama. 3a NnapameTap Be3aH 3a amnauTtyay je AobujeHa KOHpAyeHTHa
XvnepreomeTpujcka audepeHumjanHa jeAHaunmHa uYMja cy pellera TakosBaHe CoHWHe
dyHKUMje. YTBphHEHO je Aa cy pellera cTabuaiHa Kag je TOMOJIOWKO HaeneKTpucare marbe og 1,
a HectabunHa Kag, je Behe og 2.

Y paagy [20], HaheHa cy pewewa y HenuHeapHoj LpeguHreposoj jeaHaumHn ca MT-
CUMETPUYHUM NOTEHLUMjaZIHOM M CYNPOTCTaB/bEHMM HeJIMHeapHoCcTUMa cteneHa 3 u 2k+1.
JobwnjeHa cy NoKann3oBaHa pelleHa Y CBUM KoopauHaTama Ha 6a3m xunepboMyKor ceKaHca.

Y paay [21] u3 KaTeropuje (M22) cy HaheHa pellera 3a HENOKANHN U HEIMHEeapHU CUCTEM,
AeduHUCaH aBeMa jeAHauYMHaMa, jeAJHOM 33 peLleHe M APYrom Koja ogpehyje jaunHy nHaekca
npenamara y AaToj Tadku. [lobujeHa pelwerba ce 3acHMBajy Ha JakobujeBMM enUNTUYHUM
¢dyHKUMjama. Hajasan, ypaheHa je ocHOBHa aHanu3a ctabunHocTM n yTBpheHo Aa cy 3a BesnKe
anconyTHe BpeaHOCTM KoeduumjeHTa gudpaKkumje pewerba cTabuaHa, AOK Y  Manum
BPEeAHOCTUMA HacTajy HecTabuaHoCTy.



Y pagy [22] w3 KkaTeropuje (M22) cy HaheHa pellera 3a [OBOKOMMOHEHTY HeUHeapHy
LWpeaonHrepoBy jegHaumMHy Koja cy 3acHoBaHa Ha [MeperpuHoBum, AkmeamjeBsum u Maosum
pewerunma.

KoHauHo, y paay [23] u3 KaTeropuje (M23) je ap Hukona MeTposuh y capafrbM ca CBOjUM
ctyaeHTom Mowusom boxpom Halwao pellerba 3aCHOBAaHA Ha onwTtem O6AMKY enunTuyHe
andepeHumrjanHe jegHauyMHe rae je KeagpaT M3BOAa jeAHaK OMWTEM MNOJNMHOMY 4YeTBpTOr
cTerneHa OpuUrMHanHe ¢yHKUMje, OaKkne rae ce 3a pPas/AuKy o4 jegHauymHe 3a JakobujeBy
eUNTUYHY OYHKLMjY YK/byyyjy unaHoBu npsor u Tpeher cteneHa. HaheHa cy pelwera Ha
OoCHOBY BajepluTpacoBe enmMnTuyHe GyHKUMje U Ha OCHOBY OMWTUX €AUNTUUYHUX DYHKLMja Koje
HUCY CUMETPUYHE Y OAHOCY Ha Cpeatby BPeAHOCT MAaKCMMYMa U MUHUMYMa GyHKUMje.

4.3 AKTUBHOCTU Nocne M36opa Y 3Bakb€e BULUUN HAaY4YHU CapaAHUK U ONUC NEeT UCTAKHYTUX
paaoBa U3 Tor nepunoja

4.3.1. PapoBu ca AOMMUHAHTHOM y/IOrOM KaHAMAaTa

1. Y paay [24] v3 KaTeropuje M21a, KaHAMAAT je NPpMMeEHNO meToay JakobujeBe ennnNTUYHE
dYHKUMje Ha CUCTEM jegHAYMHA KOjU ONKUCYje KpeTakbe CBETNA KPO3 HemaTuuKe TeuHe Kpuctane
ca HennHeapHowhy Tpeher cTeneHa, Tako3saHom Keposom HennHeapHowhy. Mcnoctassba ce
4a Tpeba n3pasutn un TanacHy OYHKUMjY M yraoHy GyHKUMjy KpucTana Kao NOAMHOM gpyror
cteneHa Jakobujese enmntuyHe PyHKUMje. Y3 TO KoebULMjEHT y3 ApYyrv cTeneH M ciobogHu
KoepuumjeHT mopajy pa byay y cneumduyHum opHocuma. Kao nocnegmua pobujajy ce
KapaKTEPUCTMYHA pellera, KAao LWTO Cy ABOCTPYKM TaMHM COAUTOH Koju je Beh 6uo onucaH y
Apyrvum pagoBuma, anu 3axsasbyjyhy metoamn Jakobujese enmntuuHe dyHKUMje Takohe moxke
cafpKaTu 4YMpn Koju yTuuye M Ha nosaguHy. Jobujajy ce u CBETAM CONUTOHM, Kao U nyTyjyhu
Tanacu. Takohe ce nobuja 3a ciyyaj aBe TpaHCBEP3HE AMMEH3Mje Aa ce mory Hahu pelwlerba Kag
CYy CBU KoepUUMjEHTU KOHCTAHTHU OCMM jeJHOT YaK M y CAyyajy umpna. FeHepanHo cuctem
npya BeNUKWU cTeneH ¢aeKcMbUAHOCTM y3 caMo 2 orpaHuMyerba 3a NapameTpe cucTema
andepeHumrjanHux jeaHaunHa. YraoHe ¢yHKUMje reHepanHo npate ob6anK TanacHuMx ¢yHKUM]ja
WTO OACAMKABA WHTEpPaKuMjy CBET/NIOCTM Ca HEMATCKMM TEeYHUM KpucTanmma. Y usjasu
[ONPUHOCA CBaKOr ayTopa Npu Kpajy paga suam ce aa je ap Hukona MeTtposuh 6o ogrosopax
33 ngejy, peannsaumnjy, upTarbe rpadoBa, NPOBEPY peliera U NUcamwe paga, TojecT 4a je fao
OOMWHAHTHM JONPUHOC Yy OBOM Paay.

2. Y paay [26] n3 KaTeropuje M22 cy HaheHa peluerba 3a KyHay-Hackap-MyKpuu jeaHauunHy. Y
0BOj jegHa4ynHU je pas3bujeHa cumeTpuja nsmehy aBa TpaHcBep3asHa npasua, Te ce gobwujajy
3Ha4YajHO Apyrayvju obanum ¢pyHKUMja, a y NpaBLy YMju ce M3BOJ He MojaB/byje y Camoj



jeaHaumHu ce pobujajy WMpPoKe nepnoanyHe ekcTeHsnje GyHKUNje, Tako3BaHe 'KpecTte'. Yupn je
moryh camo y oBOm 1 napameTap Koju ra ogpehyje je orpaHnyeH ga byae KOHCTaHTaH, Te ce He
nobuja moaynaumnja amnantyge, anuM ce gobuja M3y3eTHO KOMMJIEKCHA moaynauuja camux
pelwera, NOrotoBo y pexxumy nyTyjyhux tanaca. Op Hukona MNetposuh Kao jeauHu aytop je
HapaBHO M3BEO LE/IOKYNHe MpopayvyHe W aHaNuM3y y camom pasy, Kao M upTarbe rpadosa u
nucame paga.

4.3.2. Onuc ocTanunx penpeseHTaTMBHUX pagoBa

3. Y paay [25] u3 KaTeropuje M22 cy HaheHa pewera 3a [ejsn-CTjyapTcOHOB cucTem
jedHaumMHa. Y 0BOM caydvajy je TanacHa ¢yHKUMja NOAMHOM nNpBOr cTeneHa Jakobujese
enunTuyHe QyHKLUMje, AOK je TaKo3BaHA QYHKLUMja cpearber NPOTOYHOT MOJ/ba MONMHOM ApYyror
cteneHa. Mako ce pobujy pelwera ca 3HayajHUM oOrpaHuyer-uma Ha BehuHy napameTtapa
ucrnoctae/ba ce ga cnobofaH unaH cpegrer MPOTOYHOr Mo/ba He MNOAJNEXKEe HUKAKBUM
orpaHuyersuma, Te je moryha nsyseTHo BesMKa PAEKCMBUAHOCT Y KOHCTPYKLMjU pelletrba. p
Hukona MNetposuh je 610 jeamHn ayTop oBOr paja.

4. Y pagy [26] u3 kateropuje M24 cy npumereHn pe3yntatm us [24] Ha HemaTU4He TeyHe
KpUCTane ca TaKO3BAHOM KYOUUYHOM-KBUHTUYHOM HennHeapHowhy. Osae fobujamo pellerba
KOJ4, KOjuX je TanacHa ¢yHKUMja NONMHOM NPBOr cTeneHa Jakobujese envnTnyHe GpyHKUMje AOK
je yraoHa ¢yHKUMja KpucTasia NoJMHOM Apyror cteneHa. [owTo cucTtem Mma jefaH cTeneH
cnobope Buwe oA cuctema onucaHor y [24], a n gasbe je 6poj orpaHnyera napameTapa 4ga, To
naje jow Behy ¢neKCMBUNHOCT Yy KOHCTPYKUMjU HOBMX pellersa of cuctema. Ap Hukona
MNeTposuh je 61O jeanHM ayTop oBOr paja.

Y cnyyajy Aa je HeEONXo4HO Aa penpe3eHTaTUBHU paj byae oa NPeTxoAHor nsbopa y 3Bambe:

5. Y KoHdepeHuunjckom pagy [29] u3 Kateropuje M33, reHepanncaHo je pellere jegHavynHe
lpoc-NMuTaeBckn ca cPepHO-CMMETPUUHOr MOTEHUMjana Ha UWMAUMHAPWUYHO- W NAAHApPHO-
CMMETPUYHe noTeHuMjane, pasdbuslIM TUME CUMETPUjy namehy Tpu TpaHcBep3He AMMEH3Uje.
Op Hukona MeTtposuh je 61O jeanHn ayTop OBOT paaa.

Mopen oBUX NeT pagoBa HaBeAeHMX 3a Nepuos oA nocnearer u3bopa NOLWITO KaHAMAAT paau
BehnHy CBOjuUX pagoBa MOTNYHO CamMOCTa/iHO MAM Yy Konabopauujama AOMMHAHTHO BOAM
Hana)erbe er3akTHUX MaTeMaTUYKUX pellera TO Ce Kao UAyCTpaluja Herose camocTasHOCTH
MOTy HaBECTU U PaloBM CMOMEHYTU Y ceKkumju 4.2. Y cnyyajy Aa penpeseHTaTUBHU paj He Mopa
Aa byae on npetxoaHor n3bopa y 3sartbe KOHPEPEHLUM|CKMU paj, U3 TauyKe 5. MOXKEeMO 3aMeHUTH
ca pagom [19] unju hemo pesrme oBae NOHOBUTU:



5. ¥ paay [19] ce aHanu3supa cTabuaHoCT pewera Koje je ap Hukona lMetposuh pobuo
MeToA0M pa3Boja no Jakobujesnum enmntmiHMm dyHKUMjama 1 objasmo y nepuoay og 2008. ao
2011. roaunHe. Y capaarum ca gp HajomaHom Anekcnhem u npod. ap Munmsojem Benuhem,
ypaheHa je aHanus3a crabunHocTM pelwera HenvHeapHe LWpeauHrepoBe jegHaunHe ca
HOPMaZIHOM W aHOMaNHOM Aucnepsnjom U jeaHaumHe lpoc-MNuTajesckor. Hajnpe je ypaheHa
TpaHchopmaumja Koja HenuHeapHy LpeauHreposy jeaHaumHy ca  auctpmbympaHum
KoeduUUMjeHTUMA CBOAM Ha jeAHAYMHY Ca KOHCTAHTHMM KoeduuujeHTMma. 3aTum je
KOHCTpyucaH oarosapajyhu JlarpaHxujaH M noa nNpeTnocTaBKOM MOCTOjatba MOAY/1AUMOHe
HecTabunHocTM cy gobujeHe jeaHauYMHe 3a HMXOBY LENOKYMHY aMnAUTyAy, Tj. eH peanaH u
MMarnHapaH geo, y GyHKUMjU of TanacHor 6poja neptypbaumja. 3aTMm je cUCTEM jeaHauMHa
peweH ga 6u ce pobwno ga nvM napameTpu AMBEPTUMpPajy WAW He U TUMe OApPeauno ga nu
pewera UMajy ctabunHoct. YTBpheHo je Aa y CBMM CayyajeBMMa pellera noceayjy wam
ancoNyTHY CTabUAHOCT MM CTaBUAHOCT Y3 NPUCYCTBO TaKO3BAaHOT MeHaXMpara gucnepsuje, Tj.
anTepHUparba 3HaKa KoeduumjeHTa pgucnepsuje y3 nomoh meTtamaTtepujana. AnconyTHa
CTabuaHoOCT je yTBphHeHa y TPU AUMEH3MNje 32 TaMHE CO/IMTOHE Y aHOMaJIHOj ANCNEepP3nuju, 1 3a
CBeT/Ie BPEMEHCKEe CONMTOHE Yy HOPMAJIHOj Ancnep3nju, AOK je y Ase AMMEH3Mje anconyTHa
cTabunHoct ytepheHa 3a cee TamHe conutoHe. OBM pe3ynTaTn Cy NPoOBEepPeHM KOMMNjyTEePCKUM
cMMyfaumMjama M A4obujeHo je CKopo MOTMNYHO cnarakbe y pewernma 6e3 ympna u n3yseTHo
[06po KBaMTAaTMBHO cnarakbe Koje y CBaKOM ciydajy notsphyje KpuTepujyme anconyTHe
CTabunHOCTM Yy pellerbmma ca ympnom. Ap Hukona MeTtposuh je Kao NpBM ayToOp y4ecTBOBAO Y
CBMM acneKTama OBOr paga OCMM KOMNjyTEePCKUX CMMyAnauuja.



5. ENEMEHTU 3A KBANTUTATUBHY OLEHY HAYYHOT AONPUHOCA KAHOUOATA: HUKONA 3
NETPOBUR

5.1 KBanutet Hay4yHUX pe3yaTaTta

5.1.1 HayyHu HMBO 1 3HAuaj pe3yAaTaTa, yTULAj HAyYHUX pagoBa

Op Hukona 3 MeTtposuh je y Aocaaalltb0oj Kapujepun 61Mo ayTop 1amn KoayTop Y3 AaBare K/by4yHor
AOmNpuHOCA Y YKYNHO 23 paga u ABa pafa ca KoHdepeHuuja, objaB/beHnx y mehyHapogHum
yaconucuma ca ISl nucte (papgosu Kateropuje M2la, M21, M22 n M23 wn pagosu ca
KoHbepeHuuje KaTeropuje M33). Opg Tora je 10 pagoBa y Kateropuju M2la (mehyHapoaHu
Yyaconucu U3y3eTHUX BpeaHocTu), 5 y Kateropumju M21 (BpxyHCKM mefyHapoaHu Yyaconucu), 6 y
KaTeropmju M22 un 2 y kateropuju M23.

Y nepuoay HakoH oanyke HayyHor Beha o npeanory 3a cTuMUakbe NPeTxoaHOr HayyHor 3Bamba,
ap Hukona 3 Netposuh je objaBno 3 pagosa y yaconmcuma ca ISI nmucre. Op Tora je 1y
yaconucuma Kateropmje M2la (mehyHapoOHM YaconucU W3Y3eTHUX BPEAHOCTU) U 2y
yaconucuma Karteropmje M22. Takohe je objaB/beH jow jegaH pag y Aomahem yvaconucy
KaTeropuje M24.

YTuuaj Hay4yHMX pagoBa ce BUAM Uy ceKumjm 5.1.2. Kpo3 NprKasaHy LMTUPaHOCT.
OppKao je M npegaBarbe MO NO3UBY Ha HAYYHOM CKyny.
Kao net HajsHauajHujux pagosa y Kapujepu ap Hukone NMetposuha mory ce usgsojutu:

1. [3] M. Beli¢é, N. Z. Petrovi¢, W.-P. Zhong, R. H. Xie and G. Chen, “Analytical Light Bullet
Solutions to the Generalized (3+1)-Dimensional Nonlinear Schrodinger Equation,” Phys. Rev.
Lett. 101, 0123904 (2008). IF 7.180 (5/68) M21a, 6poj umTaTa: 206

2. [2] W.-P. Zhong, R.-H. Xie, M. Beli¢, N. Z. Petrovi¢, G. Chen and L. Yi, “Exact spatial soliton
solutions of the two-dimensional generalized nonlinear Schrédinger equation with distributed
coefficients,” Phys. Rev. A 78,023821 (2008). IF 2.908 (6/64) M21a, 6poj umTaTta: 153

3. [8] A. Al Bastami, N. Z. Petrovié¢ and M. R. Beli¢, “Special solutions of the Ricatti Equation with
applications to the Gross-Pitaevskii nonlinear PDE,” Electron. J. Diff. Egs., Vol. 2010, No. 66, 1
(2010). IF 0.427 (198/245 podaci za 2011) M23, 6poj uuTata: 50

4. [4] N. Z. Petrovi¢, M. Beli¢, W.-P. Zhong, R.-H. Xie and G. Chen, “Exact spatiotemporal wave
and soliton solutions to the generalized (3+1)-dimensional Schrodinger equation for both



normal and anomalous dispersion,” Opt. Lett. 34, 1609 (2009). IF 3.059 (6/71) M21a, 6poj
uutaTa: 44

5. [5] N. Z. Petrovié, M. Beli¢ and W.-P. Zhong, “Spatiotemporal wave and soliton solutions to
the generalized (3+1)-dimensional Gross-Pitaevskii equation,” Phys. Rev. E 81, 016610 (2010).
IF 2.352 (4/54) M21a, 6poj umtaTa: 42

Kao net penpeseHTaTMBHUX pafoBa KaHAUAATA 04, NpeTxoaHor u3bopa y 3Barbe mory ce
y3eTu:

[24] N. Petrovi¢, M. Beli¢, W. Krolikowski, “Solitary and traveling wave solutions to nematic
liquid crystal equations using Jacobi elliptic functions,” Chaos, Solitons & Fractals: X 13, 100121
(2024). IF=5.3 (2/57) SNIP=1.8, M21a

[25] N. Z. Petrovié, ”’Solitary and traveling wave solutions for the Davey—Stewartson equation
using the Jacobi elliptic function expansion method,” Optical and Quantum Electronics 52 (6),
319 (2020). IF=2.084 (57/99) SNIP=0.78, M22

[26] N. Petrovié, “Chirped solitary and traveling wave solutions for the Kundu—Mukherjee—
Naskar equation using the Jacobi elliptic function expansion method,” Optical and Quantum
Electronics 54 (10), 644 (2022). IF=3.0 (42/100) SNIP=0.87, M22

[27] N. Petrovié, "Solitary and traveling wave solutions to nematic liquid crystal equations with
cubic-quintic nonlinearity using the Jacobi elliptic function expansion method,” Facta
Universatis: Electronics and Energetics (2025) (pag npuxsaheH y yaconuc), IF=0.6, M24,

[29] N. Petrovié, "Exact traveling and solitary wave solutions to the generalized Gross-Pitaevskii
equation with cylindrical potential,' Proceedings of the 2nd Conference on Nonlinearity,
Serbian Academy of Nonlinear Science, p. 259 (2021), M33

HeTtasbaH onuc neT ogabpaHux pagosa Koju je Beh npeseHTUpaH y oaesbKy 4. yk/bydyje u asa
paja KOju ce KOPUCTe KAao A0Ka3 3a CaMOCTa/IHOCT KaHAu4aTa, Npu Yemy je jegaH Kateropuje
M21a, a apyru M22.

5.1.1.1 PapoBu ca AOMUHAHTHOM Y/I0roM KaHAuAaTa

1. Y paay [24] v3 KaTeropuje M21a, KaHAUAAT je NpuUMeHMo metoay Jakobujese ennnTuyHe
dyHKUMje Ha cucTem jegHauYMHa KOjU OMKUCYje KpeTakbe CBeT/a Kpo3 HemaTuuKe TeuHe KpucTtane
ca HenvHeapHowhy Tpeher cteneHa, Tako3BaHOM KepoBom HennHeapHowhy. Mcnoctassba ce
na Tpeba n3pasutn n TanacHy GYHKUMjy M yraoHy GyHKUMjy KpucTana Kao NOAMHOM Apyror
cTeneHa Jakobujese ennntuuHe dyHKUMje. Y3 TO KoePUUMjEHT y3 ApPYrM cTeneH M cnobogHu
KoeduumjeHT Mopajy aa byay y cneumduyHum oaHocuma. Kao nocneauua pobujajy ce



KapaKTEPUCTMYHA peLleHa, Kao WTO CYy ABOCTPYKM TaMHU COUTOH Koju je Beh 6mo onucaH y
APYrMM pagoBMMma, anu 3axsasbyjyhy metoam JakoBujese enmntuyHe OyHKUMje Takohe mMmoxke
cagprKaTv 4mpn Koju yTuye U Ha nosaauHy. [obwujajy ce m cBeTAM CONUTOHM, Kao u nyTyjyhu
Tanacu. Takohe ce nobuja 3a cyyaj gBe TpaHCBEP3HE AMMEH3Mje ga ce mory Hahu pelwlerba Kag
CYy CBM KoedMUMjeHTU KOHCTAHTHM OCMM jeAHOr YaK M y cayyajy umpna. FeHepanHo cuctem
npyxa BenuKn cTteneH ¢aekcMbuaHocTM y3 camo 2 orpaHuyerba 3a napameTpe cucTema
andepeHumjanHux jeaHaunHa. YraoHe dyHKUMje reHepanHo npate ob6anK TanacHUx GyHKUM]ja
WTO OACAMKABA WHTEpPaAKUWjy CBETAOCTM Ca HEMATCKMM TEYHMM KpucTanuma. Y wu3jasmu
[O0NPUHOCA CBAKOr ayTopa Npu Kpajy paga suam ce aa je ap Hukona MNetposuh 6mo oagrosopaH
3a ngejy, peanmsaumnjy, upTarbe rpadoBa, NPoOBEPY pellerba U Nucame paga, TojecT 4a je Aao
OOMWHAHTHM AONPUHOC Yy OBOM paay.

2. Y pagy [26] u3 KaTeropuje M22 cy HaheHa peluerba 3a KyHay-Hackap-MyKpuu jeaHauunHy. Y
0BOj jegHa4ynHU je pas3bujeHa cumeTpuja nsmehy aBa TpaHcBep3asiHa npasua, Te ce gobwujajy
3Ha4YajHO Apyrayvju obanum ¢yHKuUMja, a y NpaBLUy YWju Cce U3BOA He MojaB/byje Y CaMoj
jeaHauvmHK ce aobujajy WMpPoKe nepnoanyHe ekcteHsnje dyHKUNje, TakosBaHe 'kKpecTte'. Yupn je
moryh camo y oBOM M napameTap Koju ra ogpehyje je orpaHnyeH aa byae KOHCTAHTaH, Te ce He
nobuja moaynaumnja amnantyge, anm ce aobuja M3y3eTHO KOMMJIEKCHA moaynauuja camumx
pelwera, NOrotoBo y pexumy nytyjyhux tanaca. Ap Hukona Metposuh Kao cono aytop je
HapaBHO M3BEO LLE/IOKYMHE NPOpavYyHe M aHaAM3y y CaMoOM paaMm, Kao M upTare rpadosa u
nucare paga.

5.1.1.2 Onuc ocTtanux penpeseHTaTMBHUX pagoBa

3. Y paay [25] u3 KaTeropmje M22 cy HaheHa peuwerba 3a [Jejsu-CtjyapTcoHOB cuctem
jeaHayvHa. Y 0oBOM c/ayyajy je TanacHa ¢yHKUMja NOAMHOM MNpBOr cTeneHa Jakobujese
enunTuyHe QyHKUMje, AOK je TaKo3BaHa QYHKUMja cpearber NPOTOYHOT MOJ/ba MOANHOM ApYyror
cTeneHa. MaKko ce nobujy pelerba ca 3HayajHUM oOrpaHuyewbMma Ha BehuHy napameTapa
ucrnoctas/ba ce fga cnobofaH YnaH cpeprer MNPOTOYHOr Mo/ba He NOANEXe HUKAKBUM
orpaHunyeruma, Te je moryha nsyseTtHo BennKa GpAEKCMOBUAHOCT Y KOHCTPYKUMjM pewema. Ap
HuKkona MNetposuh je 610 jegmHn ayTop oBOr paja.

4. Y paagy [26] n3 kateropuje M24 cy npumerbeHn pe3yntatm us [24] Ha HemaTU4YHe TeuyHe
KpUCTane ca TaKO3BAHOM KYBUUYHOM-KBUHTMYHOM HennHeapHowhy. Osae fobujamo pellerba
KOZ, KOjux je TanacHa ¢yHKUMja NOMHOM NpBor cTeneHa Jakobujese ennntnyHe dyHKUMje AOK
je yraoHa dyHKUMja KpucTasa NoJMHOM Apyror crteneHa. MowTo cucTtem MMma jedaH crteneH
cnoboge BuLe of cuctema onucaHor y [24], a n gasee je 6poj orpaHuyerba napameTapa Aga, TO



fdaje jow Behy GNEKCMOUAHOCT Yy KOHCTPYKUMjU HOBMX pellerba of cuctema. [p Hukona
Metposuh je 61O jeamHM ayTop OBOT paja.

Y cnyyajy Aa je HEONXOAHO Aa penpe3eHTaTUBHU pas byae og npeTxoaHor u3bopa y 3Barbe:

5. Y KoHdepeHuujckom pagy [29] u3 kateropuje M33, reHepanncaHo je pellere jegHauymHe
lpoc-MnTtaeBckn ca chepHO-CUMETPUYHOr MOTEeHUMjaNa Ha UWAUMHAPUYHO- M NAAHAPHO-
CMMETPUYHe noTeHuMjane, pasbuBlIN TUME CUMETPUjY uamehy Tpu TpaHCcBep3He AMMEH3U]eE.
Op Hukona MeTtposuh je 61O jeanHn ayTop OBOT paaa.

Y cnyyajy Aa je HeoNxo4HO Aa penpeseHTaTUBHU pag He mopa Aa byae og npeTxoaHor n3bopa
y 3Bakbe:

5. Y pagy [19] y Kojem ce aHanmsmpa cTabunHOCT MHOrobpojHUX pellera Koje je aobuo
MeToA0M pasBoja no JakobujeBMm ennnTuiHMM PpyHKUMjama 06jaBMO Yy HEKOJIMKO BUCOKO
UMTUPaHMX pajoBa Yy MNPeCcTMXHUM 4Yaconucuma y nepumony on 2008. po 2011. roguHe. Y
capaarem ca ap HajpaHom Anekcuhem n npod. ap Munusojem bennhem, ypaheHa je aHanusa
CTabunHoCTM pellerba HeNnHeapHe LpeauHrepose jegHauyMHe ca HOPMAAHOM M @aHOMAJHOM
aucnepsmjom U jeaHaumHe [poc-MuTajeBckor. Hajnpe je ypaheHa TpaHcdopmaumja Koja
HennHeapHy LWpeanHrepoBy jegHauuMHy ca AucTpubympaHum KoedpuuUMjeHTMMa CBOAM Ha
jeQHaYMHY Cca KOHCTAHTHUM KoeduuMjeHTMMA. 3aTMM  je  KOHCTpyucaH ogrosapajyhu
NarpaHKnjaH M nog, NpeTnocTaBKOM MOCTOjakbd MOAyNaUMOHe HecTabuaHocTu cy pobujeHe
je4HauYMHe 33 HUXOBY LEeNOKYNHY aMnauTyay, Tj. FbeH peasiaH U MMarnHapaH Aeo, y GyHKumjm
oA, TanacHor 6poja neptypbaumja. 3aTm je cucTem jegHaumMHa peweH ga 6u ce obuno aa nu
napameTpu AMBEPrUpajy UanM He M TUMe ogpeanno Aa M pelewa Mmajy cTabuaHocT.
YTBpheHo je Aa y CBMM cayyajeBMMA pellerba Moceayjy MAM ancoayTHy cTabuaHocT unu
CTAabUNHOCT y3 MNPUCYCTBO TAKO3BAHOI MEHa)KMparba AMCnepsuje, Tj. anTepHMparba 3HaKa
KoedpuumMjeHTa ancnepsmje y3 nomoh metamarepujana. AnconyTHa cTtabuaHocT je ytBpheHa y
TPW AUMEH3Mje 32 TAMHE COJIMTOHE Y aHOMA/IHOj AMCNEeP3UjK, U 3a CBET/IE BpEMEHCKe CONNUTOHEe
Yy HOPMaJIHOj AMCnepsuju, AOK je y ABe AMMEH3Mje ancoayTHa cTtabunHocT ytBpheHa 3a cse
TamHe coninTtoHe. OBM pe3ynTaTh Cy NPOBEPEHN KOMMjYTEPCKMM CcUMyaLMjama U AobujeHo je
CKOpPO MOTNYHO Cnarakbe y pelwermma 6e3 ympna n M3yseTHo Ao06PO KBANUTAaTUBHO Cnarakbe
Koje y CBaKOM cnydajy notsphyje KpuTepujyme anconytHe cTabuaHocTM y peluersuma ca
ynpnom. Op Hukona MNeTpoBuh je Kao NpBM ayTop y4ecTBOBAO Yy CBMM acrneKkTama OBOr paja
OCUM KOMMjyTEPCKMX CUMYauuja.

» OcraJie mokazaresbe, mojieJbeHe y nse rpyne (A u b), mponemyje MOD:

1 A 1o 5 nzabpanux pajgosa - Ilpukazano S paxoBa

2 A yrunajaoct (y3umajyhu y o063up u 2.6) Behuna




panoBa u3 kareropuje M21a u M21. Jegan pag uma
npeko 200 no cucremy Google Scholar u joure jexan
npeko 100.

JofaTHU OnbnmoMeTpHjckn okasatesbu-IIpukazana
Tadesa

HCTaKHYTOCT, CAMOCTAJIHOCT, AY>KHHA PaoBa,
PanoBu y Bogehum yaconucuma nonyt Physical

4 b Review Letter, pan ca npexo 200 nurara.
CaMoCTATHOCT MOKA3aHA Y YACOMUCUMA HAjBHIIIET
panra M21 u M21a, ka0 1y 0CTAJIMM YaCONUCHMA.

MIPUMEHJBUBOCT, Harpajae- O03upoM 1a je pan
NPETEKHO TEOPHjCKOT KapaKTepa He MocToje
TexHH4Ke peasn3anuje. Unmak TemaTnka ce oqHOCH
Ha MPOCTHPAaIbe CBETJIOCTH MOPeT 0CTAIOT H KPo3
TAJaCOBO/E KA0 M pPeaTn3anujy KBaHTHO
HHKEeHePCKUX CHCTEMA Y OKBHPY ONTHKE MOMYT
KBAHTHHUX PavdyHApa Ma UMa HHAUPEKTHY
MPUMEUBOCT M MOTEHIINjaJI 32 KOHCYJITAIHje.

JdopatHu 6ubnMomeTpujckm NokasaTesbu (Tauka 2 M1M) cy:

N M CHVN
YKynHo 10,984 26,5 3,45
yepearero |, ;¢ 2.65 1,15
I'IOL-II'IaHKy
yepeareHo | - g 1983|225
no aytopy

5.1.2 No3nTBHA LUTUPAHOCT HAYYHUX pPafoBa KaHAUAATA

MNpema 6a3sn WOS pagoBuM KaHAuZaTa Cy UUTUPaHU YKynHo 604 nyTta, AOK je 6poj
umMtata 6e3 aytoumtata 537. [Mpema wuctoj 6asnm H-mHoekc KaHaupata je 11,
Mpwunor: nogaumn 0 UMUTUPAHOCTU ca UHTepHeT cTpaHunue WOS.

Ha 6a3u Google Scholar uma 988 uutata (WwTo yK/byvyje n 184 untata Kieure IMO Compendium)
n H daktop 14.

Huje npumeheHa HujegHa WHCTaHUA HeraTMBHE UWTUPAHOCTM, a Yy OpPOjHUM ciydajeBUMa
MeTo/e U3 pagoBa 3a Koje je 0OCHOBHM gonpuHocT Aao Hukona 3 Metposuh cy npumerbmnBaHe y

Apyrum nybavkaumjama.

5.1.3 MapameTtpu KBanuTeTa 4aconumca



N y nepuoay npe n y nepuoay nocne nsbopa kaHauaat je sehuHom objaB/bmMBao pasose y
yaconucuma KaTteropmje M21a n M21. YkynaH ¢akTop yTuuaja (36up nmnakT ¢paktopa) pagosa
KaHamnpaTta je 59,282, a y nepuoay HakoH oanyke HayuHor Beha o npeasiory 3a ctuuame
npeTxoAgHor Hay4yHor 3Barba Taj ¢aktop je 10,984. KaHampat je objaB/bmBao pagose y
HajyrnegHujum Yaconncma us rerose obnactn. MocebHo ce mehy rbuma muctudy: Phys. Rev.
Lett., Nonlinear Dynamics, Physical Review A u E. v Optics Express.

Y Kkateropuju M2la, M21, M22, M23 n M24 kaHanaat je objaBno papoBe y cnegehum
Yyaconucuma, rae cy MocebHO O3HAYEHWM OHWM YaconmUCK y KOjUMa je KaHAWAAT 06jaB/bMBAO Y
nepuoay HakoH oanyke HayuHor Beha o npegnory 3a cTuuakbe NPeTXO4HOr Hay4YHOr 3Bahba:
Mpe npeTxogHor usbopa:

e 1 pag y Asian J. Phys.: (2006) M24.

e 1 pagy Phys Rev A: (2008) IF=2.908 (6/64) M21a.

e 1 pag y Phys. Rev. Lett: (2008) IF=7.180 (5/68) M21a.

¢ 1 pag y Optics Letters: (2009) IF=3.059 (6/71) M21a.

¢ 1 pag y J Diff. Equations: (2010) IF=0.427 (198/245 noaauu 3a 2011) M23.

¢ 5 pagosay Phys. Rev. E:

(2010) IF=2.352 (4/54) M21a, (2011) IF=2.255 (6/55) M21, (2011) IF=2.255 (6/55) M21, (2011)
IF=2.255 (6/55) M21, (2014) IF=2.288 (5/54) M21a.

¢ 2 pagay Phys. Scr.:
(2011) IF=1.204 (35/84) M22, (2013) IF=1.296 (40/78) M22.
¢ 4 paga y Nonlinear Dynamics:

(2015) IF=3.000 (8/135) M21a, (2016) IF=3.464 (8/133) M21a, (2016) IF=3.464 (8/133) M21a,
(2018) IF=4.339 (8/134) M21a.

¢ 1 pag y Optics Express (2015) IF=3.148 (14/90) M21.

¢ 2 paga y Journal of Optics:

(2015) IF = 1.847 (36/90) M22, (2015) IF = 1.847 (36/90) M22.
¢ 1 pag y Europhysics Letters: (2016) IF= 1.957 (23/79) M21.

¢ 1 pag y Optical and Quantum Electronics: (2016) IF= 1.055 (70/92) M23.



MNocne npetxoaHor usbopa:

¢ 2 papgay Optical and Quantum Electronics:

(2020) IF=2.084 (57/99) M22, (2022) IF=3.0 (42/100) M22.

¢ 1 pag y Chaos, Solitons & Fractals: X (2024) IF=5.3 (2/57) M21a

¢ 1 pag y Facta Universitatis Series: Electronics and Energetics: (2024) IF=0.6, M24.

5.1.4 CteneH camoCTaNIHOCTU U cTeneH yyewha y peanusaumju pagosa y HayuHUm
LEeHTPUMA Y 3eM/bU U UHOCTPAHCTBY

KaHaunaart je jeannu aytop y 4 paga (Tpu oA npounor usbopa), ykmwydyjyhu u 1 pag y yaconumcy
M21a kateropuje, a Bogehu ayTop y jow 9 pagosa (jegaH o npownor nsbopa), ykwbyuyjyhu mn 3
paga y Yaconncuma M21a KaTeropuje. Takohe Mma pag ca CTyAeHTOM A0AMMNIOMCKUX CTyauja Yy
yaconucy M23 kaTteropuje Optical and Quantum Electronics. Ha cBum Tm pagoBuma je gao
OCHOBHM AONPUHOC peanmsaumjm Leaora paga, a 3HadajHo je y4ecTBOoBaO Ha CBMM OCTa/IM
pagosuma. 3HauyajHMM Bpojem paaoBa Kao jeauMHN 1 Kao rnasHu aytop ap Hukona Metposuh je
NOKa3ao BMCOKM CTeNeH MHULNjaTUBE U CAaMOCTA/IHOCTU.

Kao apyru aytop, 430 je HajBaKHUjU MaTeMaTUYKM AONPUHOC pagy nybankosaHom y Phys. Rev.
Lett Koju uma npeko 200 uymtata Ha Google Scholar. Y cBum pagoBuma [4a0 je OCHOBHM
LOMNPMHOC TEXHMKAMa 3a pellaBatbe He/IMHEeApHUX jeaHAuYMHA. Tume ce MOoXKe 3aK/byyuuTu aa
OH MMa jacaH AOMEH TNaBHWUX OOMPUHOCA KOjU Ce CacCToju Yy Hanaxewy M moanduKaumju
noctojehnx metTofa y UW/by HafaKerba E€r3akTHUX pellera PasiMuUTUX Knaca HeaUMHeapHUX
je4Ha4YnHa n cuctema.

Mpu wmspagu cBux nybAMKauWja KaHAMAOAT je y4ecTBOBaO Yy pPa3Bojy MeToAda, npoBepwu
Ba/baHOCTM MAaTEMATUYKUX pPe3ynTaTa, Kao U Y 3aBPLIHOj aHaAM3U HenHeapHUx ¢eHomeHa u
nucamy pagosa.

[Ba paga, npema 3axTeBMMa 3a pen3bop y 3Barbe BULLIM HAyyHU capagHuK, ogabpaHa aa
WNYCTPYjy CaMOCTaNHOCT KaHAuAaTa M HEroBe OCHOBHE JAOMPUMHOCE Cy paHuje OnucaHu
LeTa/bHUje y cekumnjm 4. n y cekumjmn 5.1. To cy:

1. [24] N. Petrovié, M. Beli¢, W. Krolikowski, “Solitary and traveling wave solutions to nematic
liquid crystal equations using Jacobi elliptic functions,” Chaos, Solitons & Fractals: X 13, 100121
(2024). IF=5.3 (2/57) SNIP=1.8, M21a

Pag je peann3oBao NOTNYHO CAaMOCTaJIHO O, MAeje, peannsaunje Teopmje U pellaBara CBUX
je4HaYMHa L0 NMcakba pasa U OAroBOpa pPeleH3eHTUMA.



2. [26] N. Petrovi¢, “Chirped solitary and traveling wave solutions for the Kundu—Mukherjee—
Naskar equation using the Jacobi elliptic function expansion method,” Optical and Quantum
Electronics 54 (10), 644 (2022). IF=3.0 (42/100) SNIP=0.87, M22

Y npukasy paga KaHgupaata (cekuuja 4) onucaHuM cy AONPUHOCKM KaHAMAaTa M Yy APYrum
pPafoBMMA, A TO je MOHOB/LEHO W Y aHA/IM3M NEeT PaLoBa.

5.1.5 Harpaae
Hnje ob6aBe3HO 3a TpaxKeHo 3Batbe.

BpeaHe nomeHa cy 1 6pojHe Harpage Ha TaKMUYEHMMA M3 MAaTEMATUKeE U GU3MKE Yy Cpeamoj
WKOAM M Ha cTyavjama Yykmydyjyhu pase cpebpHe U jegHy OpoH3aHy Mepasby Ha
MehyHapoaHUM MaTeEMaTUYKMM OJIMMNMjaAama, Kao U NOXBany Ha enMTHOM Bunujem Jlosen
MaTHam TakMuMUyery M3 MaTeMATUKe 3a CTyaeHTe y AMepuLn, Koja ce gogesbyje camo 3a 25-50
MeCTa Y KOHKYPEHUMjU Of HEKONMKO Xwu/bafda CTygeHaTa MaTemaTuKe, Yr1aBHOM ca
HAjNPeCTUKHUjUX YHMBEP3UTETA.

5.2 AHraxkosaHocT y popmupatby HaydyHUX Kaaposa

Tokom 6opaBKa Ha YHuBep3uTeTy y KaTtapy KaHOMAaT je pyKOBOAMO AUMNAOMCKMM pafoBUMa
BuLWe cTyAeHaTa. Y Tom nepuoay Huje 6uno moryhe opraHnsoBaTy AOKTOPCKE CTyAnje Ha TOM
o4ceky YHMBEp3MTETa a/in O KOMMJIEKCHOCTM MpOjeKkaTa Kojuma je pyKoBogmo Yy pagy ca
CTYAEeHAaTUMa rOBOPU U YMHEHMULA A3 je ca TPW CTyaeHTa Ny6AnMKoBAO YKYMHO WecCT pajosa, U
TO ABa paja y Yaconucy Phys Rev E, aBa paga y waconucy Physica Scripta, jeaaH pag y Optical
and Quantum Electronics u jepaH pag y Electron. J. Diff. Egs.

Paguo je y kKomucujama [pywitBa Matematuyapa 1 Apywtea pusmnyapa Ha Npunpemun 3agartaka
3a TakKMuuerba M3 OM3MKe M MaTemaTUKa M Ha HMXOBOM OLEHMBakby. Y4yecTBoBao je vy
npunpemMama Maagux matemaTmyapa. Krwura peweHux npobnema ca MehyHapogHux
MaTeMaTUYKUX OIMMNNjaLa je OCHOBHU YLIBEHUK 3a NpuUnpeme 3a TaKMUYerba CByAa Y CBETY,
6una je untmupaHa (184 npema cepsucy Google Scholar) y HM3y Hay4yHWX pagoBa M3 061acTy
nefgarormje M HacTaBe MaTemMaTMKe, Kao WM paja Ca TaJIeHTOBAaHUM CTyZAeHTMma. Tpeba
HanoOMeHyT Aa ce KaHAWaaT 6aBn MaTemaTikoM GU3MKOM Te [a je MaTeMaTMKa OCHOBHMU
anaty eroBom paay.

3axBa/byjyhn Tome pa je KaHaAngaT 6Mo npucyTaH y [oOXuM Ha HeroBom YHMBeEpP3UTETY je
OpPraHM30BaH TOKOM HEKOJIMKO FoAMHA TYPHUP M npunpeme CTyZeHaTa U3 [ecCeTak OKOJHUX
3eMa’ba 3a yyewhe Ha MehyHapoAHUM MaTEMATUYKUM onMmnnjagama. lNocne ognacka Hasag
y beorpag noctojana je MHUUMjaTMBA Aa Ce OH aHra)kyje ga HacTaBu paj, Ha opraHusauumjm



npunpema LTOo je peasn30BaHO CaMO TOKOM jefHe LIKOJICKe roguHe. Y4yecTBoBao je y 6pojHum
npunpemama y Cpbujn 3a gomaha n mehlyHapogHa maTeMaTUyKa TaKMUYEHba.

5.3 Hopmupare 6poja KoayTOpCKMX pafoBa, NaTeHaTa M TEXHUYKUX peLlera

MowTo HujegaH paa aAp Hukone Metposuha Hema Buwe og 3 aytopa y oBOM M3BopHOM
nepuoay, Hema notpebe 3a HOPpMUPAHEM.

5.4 PykoBohere npojekTMma, NOTNPOojeKTMMA U NPOjeKTHMM 334aLMma

KaHauaaT pyKoBoAM NPOjeKTHMM 3a4aTKOM "AHAAUMUYKO pewasaHe HeauHeapHUX jeOHa4uHa
y onmuuyu" y oOKBupy npojekta OH171006 "HenuHeapHa OUHAMUKG /10KAAU3080HUX
CAMOOP2aHU308AHUX CMPYKMypa y naa3mu, HGHO-KOMMO3UMHUM Mamepujanuma, meyHum u
(hOMOHUYHUM KpUCMaauma u yampaxsaao0HUM KoHOeH3amuma" nog pykosoactsom aAp MwunaHa
MeTposuha

5.5 AKTMBHOCT Y HAQyYHUM M HayYHO-CTPYYHUM APYLUTBUMA

KaHguaat je 6M0 uyfnaH KomMcMja 3a Takmuuerbe [pywTtsa ¢usmyapa Cpbuje n OpywTea
matemaTtuyapa Cpbuje.

OH je 6M0 ynaH Komucuje ApywTBa matematmyapa Cpbuje 3a TakMmuyerba M3 MaTeMaTUKe of
2014. roguHe po 2022. rogmHe. Y4YecTBOBAO je Yy cacTaB/bakby 3a4aTaka 3a CBE HMBOE
TaKMUYEHa M Yy npunpemama TMma 3a MehyHapoaHy MaTemMaTUyKy ONMMNMjagy U apyra
mehyHapogHa TaKmumuyewa W3 MaTemMaTuKe. Takohe je u aytop 3agaTka 6poj 6. Ha
MehyHapoaHoj maTemaTMyKoj onumnujaam 2022.

Ap Hukona MeTtposuh je Takohe peueH3eHT y HEKOIMKO yraeaHux Yaconuca: Communications
in Nonlinear Science and Numerical Simulation, Physica Scripta, Chinese Journal of Physics,
Results in Physics n gpyrux.

5.6 YTULajHOCT HAy4YHUX pe3yaTaTa

Osae noHaB/bamo ofesbak 4.1.3 y3 gonyHy.

Y Kateropunju M21la, M21, M22, M23 n M24 kaHgupat je objaBno pagose y cnegehum
Yyaconucuma, rge cy nocebHO O03Ha4YeHW OHM YACOMUCKU Y KOjUMA je KaHauAaT objas/bmeao y
nepuvoay HakoH oanyke HayuHor Beha o mpeasiory 3a cTuuare NPeTXoA4HOr HAay4yHOr 3Batba:

Mpe npeTxogHor usbopa:
¢ 1 paa y Asian J. Phys.: (2006) M24.
e 1 pagy Phys Rev A: (2008) IF=2.908 (6/64) M21a.

¢ 1 paay Phys. Rev. Lett: (2008) IF=7.180 (5/68) M21a.



¢ 1 pag y Optics Letters: (2009) IF=3.059 (6/71) M21a.
¢ 1 paa y J Diff. Equations: (2010) IF=0.427 (198/245 nopauu 3a 2011) M23.
¢ 5 pagoBay Phys. Rev. E:

(2010) IF=2.352 (4/54) M21a, (2011) IF=2.255 (6/55) M21, (2011) IF=2.255 (6/55) M21, (2011)
IF=2.255 (6/55) M21, (2014) IF=2.288 (5/54) M21a.

e 2 pagay Phys. Scr.:
(2011) IF=1.204 (35/84) M22, (2013) IF=1.296 (40/78) M22.
* 4 paga y Nonlinear Dynamics:

(2015) IF=3.000 (8/135) M21a, (2016) IF=3.464 (8/133) M21a, (2016) IF=3.464 (8/133) M21a,
(2018) IF=4.339 (8/134) M21a.

¢ 1 pag y Optics Express (2015) IF=3.148 (14/90) M21.

¢ 2 paga y Journal of Optics:

(2015) IF = 1.847 (36/90) M22, (2015) IF = 1.847 (36/90) M22.

¢ 1 pag y Europhysics Letters: (2016) IF= 1.957 (23/79) M21.

¢ 1 pag y Optical and Quantum Electronics: (2016) IF= 1.055 (70/92) M23.
MNocne nperxogHor usbopa:

¢ 2 paga y Optical and Quantum Electronics:

(2020) IF=2.084 (57/99) M22, (2022) IF=3.0 (42/100) M22.

¢ 1 pag y Chaos, Solitons & Fractals: X (2024) IF=5.3 (2/57) M21a

¢ 1 pag y Facta Universitatis Series: Electronics and Energetics: (2024) IF=0.6, M24.

YKkynaH dakTop yTuuaja (36up nmnakT daKkTopa) pasosBa KaHAuaaTta je 59,282, a y nepuoay
HaKoH ognyKe HayuyHor Beha o npeasiory 3a cTuUakbe NPeTxoAHOr Hay4yHOor 3Barba Taj haKkTop je
10,984. KaHauaaT je ob6jaB/bMBa0 pagoBe Yy HajyrnegHujum yaconmcuma us rberose obnacru.
MocebHo ce mehy wbmma uctudy: Phys. Rev. Lett.,, Nonlinear Dynamics, Chaos, Solitons &
Fractals X, Physical Review E. vn Optics Express.

MNpema 6a3sn WOS pagoBu KaHAuZaTa Cy UUTUPaHU YKynHo 604 nyTta, OOK je 6poj
umMtata 6e3 aytoumtata 537. [llpema wuctoj 6asnm H-nHoekc KaHaupata je 11.
Mpwunor: nogaumn 0 LMTUPAHOCTU CA UHTEPHET cTpaHuue WOS.



Ha 6a3u Google Scholar nma 984 yutaTa (WTO YK/BYUYje u 184 untaTta Krbmre IMO Compendium)
n H paktop 14.

Hajuutupanuju pagosu y uenoj kKapujepu cy npema Google Scholar:

1. Analytical light bullet solutions to the generalized (3+ 1)-dimensional nonlinear Schrodinger
equation, M Beli¢, N Petrovi¢, WP Zhong, RH Xie, G Chen, Physical review letters 101 (12),
123904, 2008, uymTtata: 206

2. The IMO Compendium: A Collection of Problems Suggested for the International
Mathematical Olympiads: 1959-2009 Second Edition, D Djukié, V Jankovi¢, | Mati¢, N Petrovi¢,
Springer Science & Business Media npso nsgate 2006 gpyro nsgame 2011, ymrtarta: 184

3. Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schroédinger
equation with distributed coefficients WP Zhong, RH Xie, M Beli¢, N Petrovi¢, G Chen, L Yi,
Physical Review A 78 (2), 023821, 2008, uwuTara: 153

4. Special solutions of the Riccati equation with applications to the Gross-Pitaevskii nonlinear
PDE, A Al Bastami, MR Beli¢, NZ Petrovi¢, Electronic Journal of Differential Equations (EJDE) 66,
1, 2010, uutaTa: 50

5. Exact spatiotemporal wave and soliton solutions to the generalized (3+ 1)-dimensional
Schrodinger equation for both normal and anomalous dispersion, NZ Petrovi¢, M Beli¢, WP
Zhong, RH Xie, G Chen, Optics letters 34 (10), 1609-1611 2009, uuTaTa: 44

6. Spatiotemporal wave and soliton solutions to the generalized (3+ 1)-dimensional Gross-
Pitaevskii equation, NZ Petrovi¢, M Beli¢, WP Zhong, Physical Review E 81 (1), 016610, 2010,
uuTaTa: 42

7. Controllable parabolic-cylinder optical rogue wave, WP Zhong, L Chen, M Belié¢, N Petrovié,
Physical Review E 90 (4), 043201 2014, uuTaTa: 41

5.7 KoOHKpeTaH A0NPUHOC KaHAMAATA Y peannsaumju pagoBa y HAyYHHUM LLEHTPUMA Y 3eM/byU
M MIHOCTPAHCTBY

CBM pafoBM KaHAMpaTa cnagajy y AOMEH He/iMHeapHe ONTWUKe OA4HOCHO WWpe NocMaTpaHo
obnactn OnTuKa u3 gomeHa pU3MYKMX HayKa. JeaaH paf, Koju ce basu guHammkom Bose Einsten
KOHAEH3aTa cnaja BULLE Y 4OMEH aTOMCKE U MOJIEKynapHe Ppusnke.

KaHangat Mma akTMBHY capagky M 3ajegHuuKke nybauvkaumje ca McTpaxkuBaumma y obnactm
He/IMHeape ONTUKE N HEAMHEAPHE ANHAMMKE, Kao U maTemaTnyke pusuke: npod. aop Mmnamneoj
Benuh, ®akynTeT 3a HayKy M WMHXKerbepuHr Xamag ouH Kanuda yHuBep3uteTa, HeKkadalru
Texas A&M vyHuBepsuter, foxa Katap, Cuamjy Cy (Si-Liu Xu), LLUKona enekTpoHCKor u



MHPOPMALMOHOT MHKerepuHra, Xy-ben yHuBepsuteT Hayke u TexHonorunje, CjeHuH, KuHa
Bennunr Xonr (Wei-Ping Zhong), WyHae nonutexHnukn dparyntet, LyHae, KuHa. Takohe je y
CKOpMje Bpeme YyCnocCTaB/beHAa W capagha Ca yraefHUM CTPpydYHbakom ca AycTpanujckor
HauunoHanHor YHusep3uteta (ANU) Becnasom Kponunkosckum (Wieslaw Krolikowski)

5.8 YBogHa npepaBarba Ha KOHpepeHumjama U apyra npeaaBara
HakoH npeTtxoaHor nsbopa y 3Barbe, KaHamMAaaT je oapxao cnegeha npegaBarba:
5.8.1. NpepgaBake No nosusy:

N. Petrovi¢,”Solitary and traveling wave solutions to equations governing nematic liquid crystals
using the Jacobi elliptic function expansion method,” International Congress and Expo on
Optics, Photonics and Lasers (EUROPL2023), p.19 (2023)

5.8.2. Octana npepgaBama:

N. Petrovié, ’Spatio-temporal solitary and traveling wace solutions to the Kundu-Mukherjee-
Naskar equation’, VIII International School and Conference on Photonics (PHOTONICA2021),
p.70 (2021)

N. Petrovié, "’Solitary and traveling two-component wave solutions in menatic liquid crystals
using the Jacobi Elliptic function expansion method.” 3rd Conference on Nonlinearity, Serbian
Academy of Nonlinear Science, (2023)

N. Petrovié, Solutions to nematic liquid crystal systems with cubic-quintic and septic
nonlinearities using the Jacobi elliptic function expansion method,” IX International School and
Conference on Photonics (PHOTONICA2023), p. 53 (2023)

N. Petrovi¢, “Solitary and traveling wave solutions to the Nonlinear Schrédinger equation
describing quantum droplets”, Xl-th International Conference "Solitons, Collapses and
Turbulence: Achievements, Developments and Perspectives," p. 60 (SCT2024) (2024)



6. EnemeHT 3a KBAaHTUTATUBHY aHaNNU3y pajaa

OcTBapeHW pesynTaTM y nepuvoay HakKoH opayke HayyHor Beha o npegnory 3a cTuuakbe
NpPeTXoAHOr Hay4HOr 3Bakba

Kareropuja M 6opoBa o paay bpoj panosa Yxynao M 6o110Ba

M2la 10 1 10
M22 5 2 10
M24 2 1 2
M32 1,5 1 1,5
M33 1 1 1
M34 0,5 4

YKynHO 26,5

I'Iope'f)el-be ca MMHUMA/THAM KBAHTUTATUBHMM YC/10OBMMaA 34 peM360p Y 3Barb€e BULLIN Hay4YHU
CapagHUK:

M kateropuje Ycnos OcTBapeHo
YkynHo 25 26,5
M10+M20+M314+M32+M33+M41+M42 20 24,5
M11+M12+M214+M22+M23 15 20

JdopatHn 6ubnMomeTpujckm NoKasaTesbu (Tauka 2 M1M) cy:

o M CHUIT
YkymHO 10,984 26,5 3,45
Ycepenmeno no wiaHky | 2,746 2,65 1,15
Ycepenmweno no ayropy | 7,45 19,83 2,25

HanomeHa, Kog ycpearersa cy 3a UD cy padyHaTta 4 pafsa ca MmMakT ¢aktopom, 3a M
KaTeporujy cy payyHaTte cBe cTaBke, a 3a CHUI cy padyHaTa Tpu paga Koja umajy csoj CHUM.



MNpema 6a3n WOS pagoBu KaHAMZaTa Cy UUTMpPaHU yKynHo 604 nyTta, AOK je 6poj
umMtata 6e3 aytoumtata 537. [llpema wuctoj 6asnm H-uMHOeKc KaHaupata je 11.
Mpwunor: nogauy o0 LMTUPAHOCTU Ca UHTEPHET cTpaHuue WOS.

Ha 6a3u Google Scholar nma 988 yutaTa (WTO YK/BYUYje u 184 untata Kbmre IMO Compendium)
n H daktop 14.
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In our paper we apply the Jacobi elliptic function (JEF) expansion method to obtain exact solutions to the
system of equations governing nematic liquid crystals, a system of high importance in nonlinear optics with
numerous physical applications. We obtain solutions that are second-order polynomials in terms of JEFs for
both the wave function and the tilt angle of molecular orientation. The solutions differ from previously
obtained solutions in including both traveling and solitary wave solutions, with and without chirp. They also

include the longitudinal dependence of coefficients in the equations, allowing for the management of both the
dispersion and diffraction. Only two parameters of the differential equation need to be defined in terms of
other coefficients, providing a wide range of flexibility when it comes to constructing solutions.

1. Introduction

Nematic liquid crystals (NLCs) are important systems in nonlinear
optics that allow the study of many nonlinear phenomena at low power,
due to a very large nonlocal nonlinear response via the light-induced
reorientation of NLC molecules [1]. Nonlinear dynamical phenomena
such as strange attractors, bifurcations, quasi-periodic behavior and the
emergence of chaotic regimes can be observed in NLCs [2,3]. Spatial
solitons, which are known as nematicons [4,5], can also be easily
observed in NLCs [6] and have been shown to be remarkably stable in
the two transverse dimensions [7]. NLCs are generally described by a
pair of coupled nonlinear differential equations governing the behavior
of the wave function of light and the angular tilt of molecules in the
crystal [8].

Various methods have been proposed to find optical solutions to this
system of partial differential equations (PDEs), including the tan(¢/2)-
expansion method [9], the generalized exponential rational function
method [10], the simple equation method [11,12], the variational
method for finding approximate solutions [13-15], and others [8,16].
Among the approaches, a basic ansatz involving JEFs had been used
in [17], but only the boundary cases that produce solitary waves were
considered.

Recently, a lot of progress in finding new solutions to PDEs was
made using the JEF expansion method [18]. The JEF expansion method
has been used to find solutions for various forms of the nonlinear

Schrodinger equation (NLSE) [19-22], the Gross—Pitaevskii equation
(GP) [23,24], and others [25-27].

There are numerous advantages to using this method over the more
conventional function expansion methods such as the hyperbolic tan-
gent method [18]. First, the JEF itself has a flexible form, encompassing
both the elliptic and hyperbolic trigonometric functions and allowing
both solitary and traveling wave solutions, depending on the parameter
M [18,19]. Second, one can find both chirped and unchirped solutions
to the considered equations [20-27]. Here, the term ‘chirp’ refers to
the quadratic dependence of the phase with respect to the transverse
variables [19]. Finally, the form of equations in these papers sometimes
contains distributed coefficients rather than constants, which allows for
the management of both the dispersion [28] and diffraction [29]. The
management in this sense means a careful longitudinal control of dis-
persion and diffraction, so that the resulting solutions can be effectively
tailored for various applications. The solutions obtained in [20-24]
were found to be in most cases modulationally stable, either absolutely
or under the regime of diffraction/dispersion management [24,30].

In this work, we generalize the JEF expansion method, developed
in [21,22], and, expanding upon the results in [17], find exact solutions
to the NLC system of equations (NLCSOE), including the effects of
both the chirp and dispersion/diffraction management. We apply the
principle of harmonic balance to both the wave function and the
angular tilt, and apply matching conditions to obtain the forms of
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these two functions in terms of JEFs. These forms depend on the
degree of nonlinearity and other coefficients inside the liquid crystal.
In this paper we will consider the solutions for the lowest-order (Kerr)
reorientational nonlinearity. Unlike most of other models, the form of
the wave function used here also includes a quadratic dependence on
the transverse variables in the phase, which is known as the chirp [21].
We obtain solitary and traveling wave solutions to the NLCSOE, both
with and without the chirp.

2. The method
The NLCSOE with Kerr-like nonlinearity was first introduced in [31]

and further developed in [32]. We will use the general form as given
in [8,9]:

0, (€9)]
0, 2

iu, + @Vzu + y(tpu

cV2p +1@t)p + a(®)|u)?

where u is the optical amplitude wave function and ¢ is the longitudinal
evolution variable. In some cases, the z direction is given as the
longitudinal variable instead [7] and all our solutions also translate
to this case. The subscript 7 in Egs. (1)-(2) denotes the partial time
derivative and V? = Zj-:l (ai_)” denotes the transverse Laplacian, where
s stands for the number of /transverse dimensions and x G J = Los
are the labels for the transverse coordinates. Further, p is the angle
function describing the tilt of the molecular director of the NLC, and
x(@®), c(t), I(t) and «(r) are all real functions that specify the relative
strengths of different terms in Egs. (1)—(2). These coefficients, as men-
tioned before, may contain a longitudinal dependence, which allows for
more general solutions that include both the dispersion and diffraction
management [28,29].

What follows next is a rather technical presentation of the method,
which nonetheless is necessary for a more complete understanding of
how the method works. Let n and m be the degrees of u and p in terms of
F, the selected JEF in the expansion. By balancing the largest degree of
F in each equation, so that one excludes the trivial solutions, we obtain
n+2=n+mand m+2 = 2n, from which it follows that m = n = 2. This
result is also derived in other methods, such as the one in [9]. We will
thus, following [21], assume the following ansatz for our solutions:

u(x, 1) = A(x, e B0, 3)
A = [LOFO) + fo) + [()F(0) 7, “
0 = k;(Ox; + o), 5)
j=1
B = a(t)x® + b(t) (2 x j) +e(d), 6)
j=1
p(x,1) = & (OF(0) + go() + 8L (NF©O) 7, @
where x = (x;,...,x,) is the shorthand for the transverse position
vector of s components x; (j =1,...,s), x* = Z‘;=1 sz. and, analogously,
k;(G=1,...,s) are the components of the wave vector k. Furthermore,

a, b, e, w, f; and g; (i =2,0,-2) are all functions of ¢, and F is the JEF
satisfying:

‘;2712: =co+yF2 + ¢, F*, 8
where ¢, ¢, and ¢, are coefficients that depend on the JEF parameter
M and the chosen JEF. For example, when F = dn we have ¢y = M —1,
¢ =2-M and ¢, = —1, and when F =sn we have ¢y = 1, ¢; = —(1+ M)
and ¢, = M. Note the dependence of ¢ on x and ¢, which is reminiscent
of a phase variable k- x+w(z), but here it also serves as the argument of
JEFs, normally an elliptic integral of the first kind. We do not include
the odd degrees of F in our formulas for A and p, because that would
lead to 8 new equations for only 4 new functions.
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Further, following [21], we plug the ansatz into equations, separat-
ing Eq. (1) into the real and imaginary parts. We obtain a polynomial
in terms of F and 0, F and, setting each coefficient to 0, we obtain a
system of algebraic and ordinary differential equations (ODEs). Thus,
the original system of coupled PDEs is transferred into a system of
algebraic and ODEs that are more amenable to exact treatment.

For functions f;, i =-2,0,2,k;, j=1, ..., s, », a and b, one obtains
the following equations:

fi +spaf; =0,i=2,0,-2, 9)
kj+2fak; =0, j=1,....s (10)
w, + Pbk = 0, (11)
a, +2pa®> = 0, (12)
b, +2pab = 0. 13)

For function e one obtains multiple equations:
~eifo = 3UBTo+ 2foso+ xfo82+ 1S+ P (cofr e /o) K =0, (14)
;= 3PS+ 280+ xfosi +2erfk =0, =222, (15)

where k? = Z;=1 ka. is the square of the wave vector. We thus need to
employ matching conditions, to ensure Eqgs. (14)-(15) are consistent.
The remaining equations one obtains are as follows:

2 igi +3Ber i fik* =0, i=2,-2, (16)
8ol +afy +2afsf_y +2e(cogs +csg8_r)k* =0, 17)
af? +6ccy gkt =0, i=2,-2, (18)
2afyf; +4dcergik® + gl =0, i=2,-2. (19)

These are the integrability conditions for the system.
3. Results

We now proceed to solve Egs. (9)-(19). Egs. (9)—(13) are easily
solved using the basic techniques, to obtain:

fi=fion, i=2,0,-2, (20)
ki=kjon, j=1,....s 21)
N
=aw)— bo(zl ko) /0 o 22)
j=
a = ayn, (23)
b= bon, 29
where:
l (25)

pe — L
1 +2aq f) (ndt

is the chirp function [21] and the ‘0’ subscript indicates the value of
the given function at + = 0. Without loss of generality, one can assume
f20 # 0. We now consider two different cases.

3.1. Case 1: f_5p =0

In the first case one can assume f_,, = 0 and therefore f_, =
From Eq. (18) for i = —2 one obtains:

g, =0. (26)

Egs. (15), (16), (18) and (19) for i = -2 are trivially satisfied. The
matching condition for Egs. (14)-(15) gives us:

¢y + €4 /cg —3coey

20—y where r=——Y¥ =
00 ]

3¢y
r= e Jfor ¢, =0. (28)

€, ==+1, for ¢, #0, and (27)
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Note that the solution for r with ¢, = —1 for ¢, # 0 converges to
the solution for ¢, = 0 as ¢, converges to 0. Solving algebraically the
remaining equations among Egs. (16)-(19), one now obtains:

3fcyk>(cor? — 3cy)

0= 2xr(3ey — cor) ’ @9
—3fc,k?
g = —— (30)
X
18fcck*
a= —‘2‘ (31)
xf;
5 (3¢
I=dek® (=2 —c,). (32)
r

It is worth noting that unlike in [21-24], here the parameter y (rep-
resenting the strength of the nonlinearity) can be completely arbitrary.
Parameters «a, / and ¢ contain integrability conditions imposed on them
in Egs. (31)-(32), wherein a and / are expressed as functions of c.
Reformulations of Egs. (31)-(32) are possible, in which it is a or /
that defines the other two parameters in the set {c, «, /}. Finally, from
Eq. (14) one can obtain:

_ n s 3c4(c0r —3cy) 3
e=e¢ey+ 3 <k0 <2c0r B E——— rGes—ar) b / B(t)dt, (33)

where k2 = Y0_

i1 ko s the square of the initial wave vector.

3.2. Case 2: f_,, #0

Now, we assume f_,, # 0 and therefore f_, # 0. It follows from
Eq. (18) that ¢ # 0 and g_, # 0. Comparing the pairs of expressions in
two equations in (16) and (18) one obtains

So _ 80 _ G

== 34)
foo 820 <
The corresponding condition for Eqgs. (18)-(19) gives us:
—cy + €,/ c2 + 12¢4cy
@:r, where r = TV 2 , €. ==+l (35)
foo 4co

Note that the equation for r changes due to the presence of extra terms
changing the coefficient next to r2. Solving algebraically the remaining
equations among Egs. (16)-(19), one finds:

3fc k> (deyr? + 3cy)

2xr(3ey —cor) (36)

80 = —
while the formulas for g,, « and / are the same as for Case 1, given in
Egs. (30)—(32). Finally, from Eq. (14) one obtains:

6 3cy(4egr? +3 !
e=cp+ 3 <k2 <4c2 - M) —sbg> / p(ydr.  (37)
r 0

r(3cy — cor)

4. Solutions

We now present the obtained solutions for some realistic values of
the parameters. The two regimes we will study is the regime of disper-
sion/diffraction management and the regime with constant dispersion.

In the first case, we study the (1 + 1)-dimensional case with diffrac-
tion management. For this case we will have s = 1 and, simply, x; = x
and k; = k. Since in this case the diffraction periodically changes sign, it
is usually modeled with the diffraction being a trigonometric function,
e.g. A(t) = sin(£2r). Unless otherwise indicated, we will take the f_, =0
case.

In Fig. 1, one can see typical solution profiles of a solitary wave for
F =dn and M = 1. Due to the combination of the background signal
from f, and from f,, one can obtain a dark solitary wave. The fact
that the amplitude of f, does not fully match f,, for the parameters
given, results in a small elevation in the middle of the wave, giving
the wave a ’double dip’ shape. Same characteristic shape can be found
in [9,10]. In Figs. 1(b) and (c) one can see the effect of the chirp on
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the form of functions, with the background signal also being altered
by the chirp. The larger the value of chirp parameter the bigger the
oscillations of the background wave. At a, = 0.5, singularities occur,
given that f, = 1. The form of p that would allow this form of the
solution for u to exist also seems to indicate alternating orientations of
crystals, with the general amplitude of p also increasing with the chirp.

In Fig. 2, we present the traveling wave solutions obtained for
F = dn and M = 0.8. Unlike the solitary wave case for F = dn, the
traveling wave case gives two distinct values of r for F = dn, since ¢,
is no longer 0. One can notice more easily that the chirp has the effect
of not just altering the amplitude of the function, but also stretching
the wave front in the transverse direction, depending on the phase of
the traveling wave. As for the function p, we see periodicity in both
directions in the case without chirp and the corresponding stretching
effect in the transverse direction.

In Fig. 3, we analyze the solutions for F = sn. When the back-
grounds of f, and f, cancel each other out, one obtains a typical
bright solitary wave. We see that the chirp produces breather-type
solutions, in addition to deforming the profile of the wave. Given that
parameter w controls the central position of the wave and given its form
in Eq. (22), solutions where the waves travel in a straight line can be
obtained by setting b, = 0 and in this case the solitary waves take on
a shape of classical breathers. Unlike in the case of the dark solitary
wave, the p function is zero away from the wave signal indicating a
self-guiding effect.

In Fig. 4(a), we look at the effect of changing the sign for ¢,. One can
see in Fig. 4(a), for which e, = —1, that the periodicity of the solutions is
affected in comparison with Fig. 2(a), where ¢, = 1. Since the solution
for ¢, = —1 converges to the solution for ¢, = 0 as M converges to
1, one can note that the connection between Fig. 4(a) and Fig. 1(a) is
the characteristic double-dip solution. The solution becomes a periodic
wave with alternating amplitudes.

In Fig. 4(b) and (c), we look at the solutions for case 2 and compare
them with Fig. 2(a) and Fig. 4(a). One can see that the inclusion of the
inverse function has doubled the periodicity of our solutions. We have
purposely selected an example where ¢, # 0 and the inverse of F does
not produce singularities, which would not be the case for F = sn or
F =cn.

Finally, in Fig. 5 we examine the (2 + 1)-dimensional case, i.e. with
s = 2, where the coefficients f, « and y are constant. For this case we
set the variables to be 7 = z, x; = x and x, = y. In accordance with the
system given in [13], we have p = 1, « = 2 and y = 2. For s = 2 one
obtains from Egs. (31)-(32):

_ 2y a8
T 92k (38)
9cikon
8f220 3¢y
TS <7_c2>’ ©9

where k = kTo + k%o We note that due to f,, being proportional to the
chirp funct]on in Eq. (20) for s = 2, only for this value of s does the
chirp cancel out with the chirp from k; in Eq. (32) when c¢ is plugged
in. Therefore, only for s =2 will / be a constant, i.e. not dependent on
the longitudinal variable, as given in Eq. (39). In the absence of chirp,
¢ will also be constant.

Following the notation used in earlier papers [21], we will denote in
Fig. 5 parameters k;, and k,, as k, and /, (not to be confused with the
earlier definition of k). Since g is constant, one obtains a wave profile
traveling with constant speed, as depicted in Fig. 5(a), i.e. along a
straight line. The value of b, = —1 was chosen for the solutions in Fig. 5
to be in the direction of the viewing perspective. The figure in Fig. 5(a)
represents a dark solitary wave solutions with the accompanying angle
function p in Fig. 5(d). We see that the NLCs act as a waveguide for the
solitary wave. One can also observe a periodic pattern in Fig. 5(b) and
(e). Finally, we see the effect of chirp in Fig. 5(c) and (f). In the presence
of chirp, the solutions and the background decay. As demonstrated
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Fig. 1. Solitary wave solutions for F =dn, M =1 and f_,, = 0 (Case 1) as functions of time and k,x. Intensity |u|* for (a) a, = 0, (b) a, = 0.15 and (c) a, = 0.3 and the angle
function p for (d) a, =0, (e) g, = 0.15 and (f) a, = 0.3 are presented as functions of kyx and 7, for the form of f(1) given as f(r) = f, cos Qt. The values of other coefficients are:
by=1,¢=0,kig=1, foo=1, wy =0, f =1, 2 =1, while ¢, is undefined because ¢, = 0. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

lu| 2200
100
ol

Fig. 2. Traveling wave solutions as functions of k,x and ¢. The parameters are the same as in Fig. 1 except M = 0.8 and ¢, = 1. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Bright solitary wave solutions as functions of k,x and . The parameters are the same as in Fig. 1 except F =sn and ¢, = 1. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

in [23], such a signal can artificially be maintained with the addition
of an external power source, by including the gain/loss term yu on the
RHS of Eq. (1); albeit y has to be proportional to %, where (in this case)
z is the longitudinal variable.

We now compare the solutions we obtained with those in some of
the other papers. In [9], the tan(¢/2)-expansion method to obtain a

variety of solutions to the NLCSOE with various forms of nonlinearity,
including Kerr nonlinearity. It also concludes that the solutions to
the NLCSOE are second order polynomials of a function satisfying
an appropriate differential equation, which is given in Egs. (5) and
(6) of Ref. [9]. The paper analyzed the so-called ‘periodic’ solutions
obtained from the tan function and the dark-soliton solutions obtained
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Fig. 4. Traveling wave solutions as functions of kyx and 7. The parameters are the same as in Fig. 2(a) except (a) €, = —1 (b) f_, #0 (Case 2), ¢, =1 and (¢) f_,, #0, ¢, =—1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Two-dimensional solutions for f =1, a =2, y =2 and s =2 as functions of z (the longitudinal variable) and k,x +/;y for (a) M =1, a; =0, (b) M =0.8, g, =0 and (c)
M = 0.8, a, = 0.2. We also selected b, = —1 and k,, = 1. All other parameters are the same as in Fig. 1. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

from the tanh function. The periodic solutions contain singularities due
to the nature of the tan function and we do not study such functions in
our paper. For the dark soliton case, solutions qualitatively similar to
Fig. 1(a) are obtained. Since p (the parameter « in [9]) is constant in
the paper, the wave travels in a straight line.

Paper [10] also obtains qualitatively the solutions from Figs. 1(a)
and 3(a), but covers neither traveling wave solutions nor the solutions
with chirp. Paper [17] also covers these cases, except that ‘p’ is replaced
by ‘p*’ in Eq. (1). For this system we have n = 1 [17]. Paper [12]
obtains the solution based on the step function and some traveling wave
solutions.

The advantages of the solutions obtained in this paper are signif-
icant. None of the other papers consider a quadratic dependence of
the phase on the transverse chirp, a necessary condition for chirp to
arise. Given that chirped soliton solutions have applications in the
design of pulse compression and amplification [19], we believe that the
study of chirped solutions to NLCSOE will have important applications.
The approach in our paper, in addition, has the advantage that it is
very flexible and in general works for any function F which satisfies
Eq. (8). In addition, it allows for the efficient management of dis-
persion/diffraction by considering longitudinally changing coefficients,
which is also generally not included in other papers.

5. Conclusion
In this paper, we have applied the JEF expansion method to obtain

different classes of novel exact solutions to the system of equations de-
scribing the propagation of light beams in nematic liquid crystals with

distributed coefficients. The solutions allow for the free choice of all
coefficients except two, providing a wide range of flexibility. Solutions
both with and without chirp are obtained. Solutions for two transverse
dimensions are obtained when all the coefficients are constant in the
case without chirp and only one is non-constant in the case with chirp.
Our method also allows for the general management of dispersion
and diffraction, which represents a significant new development in the
treatment of solitons in NLCs.
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Abstract

In our paper we apply the Jacobi elliptic function expansion method to obtain solutions to
the Kundu—Mukherjee—Naskar equation, which is asymmetric in the two transverse direc-
tions. We obtain that the solutions contain a quadratic dependency in the phase, i.e. chirp,
in one of the two directions. Unlike in previous applications of the method, the chirp does
not affect the amplitude of the solutions.

Keywords Chirp - Solitary wave - Traveling wave - Kundu—Mukherjee—Naskar equation -
Nonlinear Schrodinger equation

1 Introduction

The Kundu—Mukherjee—Naskar (KMN) differential equation was first introduced in fluid
dynamics for the study of the evolution of three-dimensional wave packets in water of finite
depth (Kundu et al. 2014). In Kundu et al. (2014), a form of the Nonlinear Schrédinger
equation (NLSE) was proposed which would have a spatial asymmetry between the two
transverse directions, as well as modulational instability, in order to produce 2-dimensional
(2D) rogue waves.

Various solutions have been found for the KMN equation. In Rezazadeh et al. (2021),
the functional variable method was used to find basic trigonometric solutions. In Biswas
et al. (2020) and Cimpoiasu et al. (2021), solitary wave solutions are introduced and using
Lie symmetry methods conserved quantities are identified and new and more complex
solutions are generated. In Qiu et al. (2016) rogue wave solutions are obtained and dis-
cussed. In Sulaiman and Bulut (2019) ratios of trigonometric expansions are used to obtain
complicated solutions. In Ren et al. (2021), a basic traveling wave ansatz is considered
and a bifurcation analysis is performed, leading to many solutions based on the inverses of
elliptic integrals. In Ekici et al. (2019) a trial function method similar to that in Ren et al.
(2021) is used to obtain a range of solutions which all feature trigonometric and elliptic
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functions in the denominator of a fractional expression. A similar idea is used in Bilal et al.
(2021) where the ®4 method is used to find solutions related to the JEFs, except satisfying
a sixth-order differential equation instead of the fourth-order differential equation satisfied
by JEFs. In He (2020) the variational method is used to obtain another trigonometric-based
solution. In Zayed et al. (2022) a basic ansatz was applied in combination with Kudryash-
ov’s techniques to find solutions to a coupled (2+1)-dimensional ((2+1)D) system. Finally,
in Mukherjee (2020) solutions have been found which can change their curvature in space
and time based on an arbitrarily chosen function.

All of the mentioned papers only contain solutions where the phase contains a linear
dependence on the transverse variables, except in Cimpoiasu et al. (2021) and Mukher-
jee (2020) where a function affecting the phase is directly tied to a function affecting the
amplitude, in Cimpoiasu et al. (2021) quadratically and in Mukherjee (2020) linearly
affecting the characteristic variable of the elliptic function. Solution where the dependence
of the phase with respect to the transverse variables is not linear are called chirped solu-
tions. Chirped solutions have extensive application in the construction of various amplifi-
ers, pulse compressors and soliton-based communications links due to their ability to alter
the character of the propagating soliton pulse (Bouzida et al. 2017). In Desaix et al. (2002),
it is established that at a certain level of chirp a two-soliton breather will split into two
solitons or degrade through dispersive radiation. In Kruglov et al. (2003), the authors found
solutions to the NLSE with the appropriate boundary conditions. They found that a pulse
can be compressed to any degree while maintaining its shape until higher order nonlinear-
ity terms become important and concluded that a chirped soliton propagation could be an
alternative to loss management systems. The study of chirped solutions is therefore highly
important for the development of optical systems.

Recently, a lot of work was done using the Jacobi elliptic function expansion method to
find both unchirped and chirped solutions for various forms of the Nonlinear Schrodinger
Equation (NLSE) (Kruglov et al. 2003; Zhong et al. 2008; Beli¢ et al. 2008; Petrovi¢ et al.
2009) and the Gross—Pitaevskii equation (GPE) (Petrovi¢ et al. 2010, 2011). The forms
obtained in these papers use distributed coefficients which allow us to consider both dis-
persion (Eiermann et al. 2003) and diffraction management (Eisenberg et al. 2000). A fur-
ther advantage was that the solutions obtained in Zhong et al. (2008), Beli¢ et al. (2008),
Petrovi¢ et al. (2009, 2010, 2011) were found to be in most cases modulationally stable,
either absolutely or under the regime of diffraction/dispersion management (Petrovi¢ et al.
2015, 2011). Finally, all the solutions in Zhong et al. (2008), Beli¢ et al. (2008), Petrovi¢
et al. (2009, 2010, 2011) also include a quadratic dependence with regards to the transverse
variable which we will henceforth refer to as chirp.

The form of the solutions of JEF expansion method extremely suitable for the KMN
equation as the KMN equation ultimately features a nonlinearity of the third order. In this
paper we will thus use the JEF expansion method as described in Beli¢ et al. (2008) to
obtain new solutions to the KMN equation that contain chirp. As will be demonstrated,
the asymmetry in the transverse directions will lead to solutions in which the quadratic
dependence occurs in only one of them.

2 Methods

The Kundu—Mukherje—Naskar (KMN) equation has the following general form:

@ Springer
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iu, + %uxy+i,y(t)(uu; —u*ux) =0, 1)

where u is the wave function, 7 is time, x and y are transverse variables, indices are partial
derivatives, f(¢) is the diffraction coefficient and y(¢) is the strength of nonlinearity. As in
Belic¢ et al. (2008), we propose the following solution for the KMN:

u=Aée", ()

where A and B are real functions of x, y and ¢ denoting the amplitude and the phase of the
solution. Following Beli¢ et al. (2008) and Petrovi¢ et al. (2009) and accounting for the
broken symmetry between x and y directions, we assume the following forms for A and B:

u=Ae"®, 3)

A =f,(OF ) + fy®) + £, (DF ()", (4)

0 =k()x + [(Hy + w(t), Q)

B =a,()x* + ay()y* + a5(t)xy + by ()x + by(Dy + e(?). (6)

where F is a Jacobi elliptic function satisfying the differential equation:

<dF

2
%) :C0+C2F2+C4F4. (7)

Here, ¢, ¢, and ¢, are coefficients which depend on the choice of the JEF and M, the
parameter of the JEF.

Plugging in Eqs. 3-6 into Eq. 1 and matching each coefficient next to terms involving
For Z—g, we obtain the following expressions and ordinary differential equations for param-
etersk, I, f; (i =1,0,-1), a, b and w:

f; +§a3fi=0’ i=1,0,-1, (8)
b _
k, + E(aSk +2a,) =0, )
b _
lt+ §(a31+202k) —0, (10)
p _
w,+§(b2k+bll)—0, (11
ay=a3=fy=0, (12)
ay =by, =0, (13)
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by, +ab =0, (14)

e, + gblb2 + 6D, xfif- + gczkl =0. (15)

We also obtain the following set of integrability conditions for the nonlinearity param-
eter y:

[12by xft + Beykl) =0, (16)
F1Qby xf?) + Begkd) = 0. (17)

These equations can be readily solved using elementary mathematical techniques.

3 Results

We now proceed to solve Eqs. 8-17. One obtains the following formulas for the defined
parameters:

ay=a3=f=0, (18)
Co
foi=¢€fiy/— =const.,e =0,%1, 19)
Cy
k,b,,a, = const., (20)
t
L= 1y — ak / P, @1
0
t
by = by — asb, / P, 22)
0

® = w, — o, / BHdt' + w, / <ﬁ(t’) / ﬁ(t”)dl")dt/ , (23)
0 0 0

e:eo—el/ ﬂ(t’)dt’+e2/ <ﬁ(t’)/ ﬁ(t”)dt”)dt’, (24)
0 0 0

_ Begky = axk [y Bdr)
x= TR : (25)

where the coefficients w,, @,, e; and e, are defined as:
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byok + byl
w, = 20 5 10, (26)
W, = a,bk, 27
byyb
e = 2 +klo<3€\/coc4 - %2) (28)
a,b?
e, = % + k2a2<3€\/coc4 - %2) (29)

We see that as opposed to Beli¢ et al. (2008) where the solutions depended on a chirp
function, here the solutions depend on the first and second integral of f. This is funda-
mentally due to a change in the nonlinearity term which forced the chirp function to be
constant.

4 Solutions

We now analyze the obtained solutions. One notices that the method obtains a more restric-
tive set of solutions than in Beli¢ et al. (2008). In particular, certain parameters are con-
strained to be either O or a constant, and the chirp no longer affects the amplitude of the
solution making it impossible to create soliton breathers (Beli¢ et al. 2008; Petrovi¢ et al.
2009). The fact that a; = 0 means that chirp can only occur in the y-transverse direction.
Still, the solutions allow a range of forms, both solitary and traveling wave.

In Fig. 1a we see the standard solitary wave solution. This solution occurs when there
is no chirp. When a, = 0 we see from the formulas that the symmetry between the two
transverse variables is retained, which is why the plot is identical for the two transverse
variables. When a, = 1, we see that the symmetry between the two transverse variables
is broken. In the x direction (Fig. 1b) we have a combination of two sinusoidal functions,
whereas in the y direction (Fig. 1c) we have the characteristic ’crested’ forms of the solu-
tion. If one looks carefully, one sees the gradual narrowing and waning of the crests indi-
cating that they are not infinite.

In Fig. 2 we compare these with the traveling wave solutions. We see the solitary wave
solutions repeated periodically in the x direction whereas in the y direction the effect of
stretching is noticed, similar to the chirped solutions in Beli¢ et al. (2008).

Fig. 1 (Color online) Solitary wave solutions for F = dn and M = 1 as functions of time. Intensity |u|? for
aa, =0andb, cand a, = 1 are presented as a function of either x for a, b or y ¢ and ¢ for f(z) = f, cos Q.
Coefficients: b,y =0,y =0,k=11,=1,b, =1, 0w, =0,6,=1,Q=1f =1Le=0
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Fig.2 (Color online) Traveling wave solutions as functions of time. The parameters are the same as in
Fig. 1 except M = 0.97

(b) (©

Fig.3 (Color online) Traveling wave solutions as functions of time. The parameters are the same as in
Fig. Icexceptaly =0,b/;=0.8andcl, = 1.2

Fig.4 (Color online) Traveling wave solutions as functions of time. The parameters are the same as in
Fig. 2c exceptaa, =0.2,ba, =0.5and ca, = 0.8

We now restrict our attention to solitary waves. We want to see how the solutions vary
in terms of given parameters. In Fig. 3 we see what happens when we vary [, and thus con-
trol the behavior of the function in the y transverse direction. We see that at [, = 0 we have
a uniform sinusoidal wave and distribution of crests and that as [, approaches 1 the two
pairs of adjacent crests approach each other (Fig. 3c) and merge for [, = 1in Fig. 1c. As for
higher values of [, we see the crests decay rapidly (Fig. 3c).

Finally, in Fig. 4 we see the gradual development of chirp in traveling wave solutions
and the slow transformation from Fig. 2a—c. We notice the gradual appearance of the crest
forms indicating that the chirp is the strongest along these values of 7.

We will now compare the obtained solutions with solutions from previous papers. In
Rezazadeh et al. (2021) and Zayed et al. (2022) one obtains in both papers chirpless solu-
tions using various hyperbolic and exponential functions, in the case of Zayed et al. (2022)
for a coupled system. Neither chirp nor JEFs are considered in either paper. In Bilal et al.
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(2021) an interesting form of the solutions is obtain by considering a sixth-order differen-
tial equation rather than the fourth order one. This allows us to find solutions which are of
the form + where a and b are constants and fis a JEF. Again, chirp is not studied in

VafZ+b

this paper. In Cimpoiasu et al. (2021), one obtains a solution where the chirp function is
related to the square of the amplitude, whereas in our solutions the two are unrelated to
each other, i.e. one can set an arbitrary value of chirp given the amplitude. In Mukherjee
(2020) a function affecting both the amplitude and the phase is introduced which can curve
the soliton solutions in an arbitrary way. This allows for a large class of various curved
solutions to be found using Jacobi Elliptic functions. However, as in Cimpoiasu et al.
(2021), the amplitude and the phase are not independent of each other. Thus, the solutions
in this paper allow for a higher degree of control of chirp.

5 Conclusion

To sum up, we analyzed the Kundu—Mukherjee—Naskar equation and obtained large new
classes of solitary and traveling wave solutions, both with and without chirp, using the Jac-
obi elliptic function expansion method. Since the KMN equation is important in the area of
researching rogue waves, there is a good possibility of practical application for these solu-
tions. In particular, the chirped solutions will have many potential applications in soliton-
based communications.
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Abstract

In our paper we modify the Jacobi elliptic function expansion method to obtain solutions
to the Davey—Stewartson system of equations. Two categories of nonsingular solutions are
obtained for both traveling and solitary waves and both with and without chirp. In both
cases there is an arbitrary term in the mean flow field, meaning one can obtain solutions for
arbitrary forms of the mean flow field.

Keywords Davey—Stewartson equation - Jacobi elliptic function - Expansion method

1 Introduction

The Davey—Stewartson (DS) system of nonlinear partial differential equations, henceforth
abbreviated as the DS system, was first introduced in fluid dynamics for the study of the
evolution of three-dimensional wave packets in water of finite depth (Davey and Stew-
artson 1974). It has since found application in numerous areas of physics, most notably
nonlinear-optics (Newell and Moloney 1992) as well as related fields such as the study of
Bose-Einstein condensates (Huang 2005) and the study of electro-magnetic (EM) waves
in ferromagnets (Leblond 1999). A surprising property of the DS system is that it is one
of the few multidimensional systems whose inverse scattering transform is known (Sung
1994a, b, c, 1995). Of considerable interest is also the fact that rogue waves have been
shown to exist in DS systems (Ohta and Yang 2012, 2013).

Various techniques have been put forth to obtain solutions to the DS system. The earli-
est attempt was given in Anker and Freeman (1978) where the Zakharov—Shabat scheme
(1974) was used to obtain one- and two-soliton solutions, as well as model some basic
properties of interaction of multiple solitons. In Hieraninta and Hirota (1990) the Hirota
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method (Hieraninta 1997) was used to construct a multi-dromion solution. Various other
methods have been used to find new solutions to the DS system: the variable separation
method (Lou and Lu 1996; Lou 2002; Wang and Huang 2010), the G’ /G method (Ebadi
and Biswas 2011), the first integral method (Jafari 2012) as well as many others (Deng and
Qin 2006; Wazwaz 2008; Tian and Gao 1997; Yildirm 2012). Of particular interest for this
paper is the work done by Yan (2003) in which Jacobi elliptic functions (JEFs) were used
to construct solutions to a system of equations resembling the DS system. In the paper, a
basic expansion of the solution in terms of the twelve JEFs was used and solutions were
obtained in the form of the first order polynomial (of the JEFs) for the basic wave, while
the two auxiliary waves were represented with a second order polynomial.

Recently, work was done to find solutions using the JEF expansion method for various
forms of the Nonlinear Schrodinger Equation (NLSE) (Zhong 2008; Beli¢ 2008; Petrovié
2009) and the Gross—Pitaevskii equation (GPE) (2010, 2011). These forms use distributed
coefficients which allow the use of dispersion (Eiermann 2003) and diffraction manage-
ment (Eisenberg 2000). The solutions obtained in Zhong (2008), Beli¢ (2008) and Petrovié
(2009, 2010, 2011) were found to have either absolute modulational stability or modula-
tional stability under diffraction/dispersion management (Petrovic¢ 2015, 2011).

The form of the solutions of JEF expansion method is well suited when all the nonline-
arity in the problem is solely dependant on amplitude. In the DS system we have two fields:
the wave-amplitude field which is complex and the mean-field which is real. As will be
shown, it emerges from the DS system that for the matching conditions to work it is natural
to consider the mean-flow field to be second order with respect to the wave-amplitude field.
Therefore the DS system is highly suitable for the JEF expansion method. In this paper we
will apply the JEF expansion method and the ideas developed in Beli¢ (2008) to solving
the DS system.

2 Method

The Davey—Stewartson (DS) system of equations has the following general form:
t
ity + 2+ su,) + 7Ol + atoun = 0, M
M+ qnyy +6(1ul’) = 0, )

where u is the wave-amplitude field (WAF), n is the mean-flow field (MFF), ¢ is time, x and
y are transverse variables, indices are partial derivatives, f(¢) is the diffraction coefficient,
x(?) is the strength of nonlinearity, a(#) is the coupling function and r, s, ¢ and 6 are non-
zero real parameters. As in Beli¢ (2008), we propose the following solution for the WAF:

u=Ae, 3)

where A and B are real functions of x, y and ¢ denoting the amplitude and the phase of the
solution. Following Beli¢ (2008) and Petrovi¢ (2009) we assume the following forms for A
and B:

A =f{(OF©0) + fo®) + 1 (DF(0) ", “)
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0 =k()x + 1(t)y + (1), )

B =a()(x*[r + y*/5) + b(D)(x + y) + e(0), (6)
where F is a JEF satisfying the differential equation:

dF )2 2 4

— ) =yt BT+, 7

Here, ¢, ¢, and ¢, are coefficients which depend on the choice of the JEF and M, the param-
eter of the JEF. We will assume that at most one of ¢, ¢, and ¢, is 0. For the MFF we take
the following form to ensure matching conditions for the top-order terms with respect to F:

n=g,(DF(0)* + g (NF(0) + gy() + g_ | (DF(O) ™" + g_,(DF(0) . ®

We cannot have all of g,, g;, g_;, §_, be zero as n would have no dependence on the trans-
verse spatial coordinates and Eq. (2) would be trivially satisfied.

Plugging in Egs. (4)—(8) into Egs. (1)—(2) we obtain the following equations for param-
etersk, I, f; i =1,0,-1), a, b and w:

fi+2aBf, =0, i=1,0-1, )
k, +2apk =0, (10)

I, +2apl =0, (11)

o, + pb(rk +Is) = 0, 12)
a,+2a*p =0, (13)

b, +2apb = 0. (14)

We also obtain the following set of integrability conditions:

KQ5fof, +g) +8lPq=0, i = 1, (15)
I(Sf7 + g2) + gul’q = 0, i = %1, (16)
3f2fo + ofigi + afogy = 0, i = %1, (17
A+ afgoi + Py (kP +5P) =0, i = £1. (18)

and the following equations for parameter e:

b2
fo<—f3; - Tﬁ(l + )+ }(fOZ + 6)(f1f—1> + a(fogo +f18-1 +/-181) =0, (19)
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2
f (—e, - bTﬁ(l +8)+3x0f 432 + %(k% + 12s)> +a(figy +/ogi +fig) =0, i = 1.

(20)
We note that while the general set-up is similar to that of Beli¢ (2008), there are several
key differences. First, due to the presence of the MFF, we obtain four pairs of integrability
conditions instead of one, albeit with several new parameters to work with. Note that the
function g, only appears in the equations for e. Second, the presence of the MFF in Eq. (1)
affects Eqs. (19)—(20). In particular, one can no longer trivially discard Eq. (19) by assum-

ing f, = 0. We shall see that the obtained constraints on the parameters are quite different
from those in Beli¢ (2008).

3 Results

We now proceed to solve Egs. (9)—(20). Solving Eqgs. (9)—(14) we obtain:

fi=fop, i=1,0,—1, @1
k = kop, (22)
I=1yp, (23)
a = agp, (24)
b = bop, (25)
‘
o = o, — blky + los)p/0 p(t)dt, (26)

Where p is the chirp function given by:

1

P 2a [ podt’ 27

We now distinguish between two cases: f, # 0 and f, = 0.

3.1 Casef, #0

We first cover the most general case, i.e. the case when f; is non-zero. First we assume that
fyand f_, are also non-zero. We also assume k(z) + ql(z) # 0, as from assuming otherwise it
quickly follows that f;, f_; = 0. Solving Egs. (15)—(16), we obtain the following equations:

8 = 2¢fof;, i = =1, (28)

8= €fi2, i=xl, (29)

where the parameter € is given by the formula:
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5k?
€=- . (30)
kg + ql(z)

Equations (28)—(29) coincide with Eq. (14) in Ebadi and Biswas (2011) for n =2 in
the special case of f, =f_, = 0. Plugging the results in Eqs. (17) we obtain a matching
condition:

X = —ea. @31
Finally, plugging in this condition into Eqs. (18), one obtains the constraint:
rks + sIf = 0. (32)

This constraint doesn’t occur in the previous systems studied in Beli¢ (2008) and Petrovié
(2010). Given these conditions one obtains that Eqgs. (19)—(20) are automatically matched
with each other, i.e. equivalent. A surprising result emerges in that there are no constraints
on function g,(#). In other words, for every form of g,(¢) one can find a form for the free
term of the phase e(7) for which give us a solution to the DS system. Thus, we truly obtain
a wide range of solutions and the ability to study many different forms of the DS system
of equations. It is also worth noting that unlike in Beli¢ (2008) the nonlinearity y as an
integrability condition no longer has to follow the form of f and that there is no longer any
imposed relationship between fj, and f_,,. Additionally, since y is free to be of arbitrary
form, there is no longer a simple formula for e, but e is highly dependent on the choice of
x and g,
Assuming f_; = 0 and f; # 0 one obtains:

81 = 2¢fofy, i = %1, (33)
g =¢ff, i==l, (34)
8-1=8,=0, (35)
c4(rkd + sI3) = 0. (36)

Similarly, assuming f; = 0 and f_; # O one obtains:

8-1 =2efyf_y, i=%1, 37
ga=¢f, i=xl, (38)
81=8=0, (39)
co(rkg + s5) = 0. (40)

In both cases, Eq. (31) holds and g (¢) is arbitrary.
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3.2 Casef, =0

We now assume f;, = 0 and, without loss of generality, f; # 0. As in the previous sec-
tion k3 + gI% # 0. From Egs. (15)—(16), we obtain:

8§ =0,i==l1, 41)

8 =¢ff, i==xl (42)

It follows that Egs. (17) are automatically satisfied. In order for Egs. (18) to be satisfied we
must either have Egs. (31)—(32) or:

€
S =y —f1, n=0,=£1, (43)
Cy4

ﬁc4(k2 + Bs)
ae - —————.
5

We note that for the special case of @ = 0, coinciding with the system in Beli¢ (2008), we
obtain the matching condition from Beli¢ (2008). Finally, given these conditions, Eq. (19)
is trivially satisfied, while Eq. (20) are automatically matched with each other. In this case,
we no longer have the constraint given in Eq. (32).

X== (44)

4 Solutions

We now analyze the obtained solutions. We note that the condition (32) largely restricts
us to r and s being the opposite sign. By default we take F = dn which is the most
convenient function as both it and its inverse are free from singularities, though one
can obtain similar solutions in many cases with other choices for F. We note that for all
cases where g, = 0 we have that n is qualitatively similar to |u|? and therefore only |u|?
will be shown.

We take M = 0.97, describing so-called traveling wave solutions. In Fig. la we see
the most basic form of the solution for |u|?. Since k and [ are of equal sign they cancel
out in 12 leading to no time dependence in 6 in the absence of chirp. In Fig. 1b we see
the results when k, and [, are of opposite sign. For M = 1, a solitary wave solutions is
obtained as shown in Fig. lc. In Fig. 1d—f we see the effects of chirp on our solutions.
We note the loss of periodicity in the traveling wave solutions and the stretching effect
present in Fig. 1d away from the center, whereas in Fig. le this pattern is shifted away
from the center. We also note the oscillation in amplitude in all three cases, especially in
Fig. 1f, where the solution corresponds to a breather solitary wave.

In Fig. 2 we see the effects of combining several terms in the solution. We see the
inverse function dominate in Fig. 2a with respect to Fig. la. The presence of f;, =1
shifts the function upward in the regime without chirp.

Finally in Fig. 3 we only cover cases not applicable under Case 1, i.e. we see the
solutions for r = s = 1 which was inadmissable under Case 1. In Fig. 3a we take n =0,
in Fig. 3b # = 1, while in Fig. 3c we look at dark soliton solutions by taking F = sn.
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(a)

2
[ul 0
1.0 5
0.5 | t
3 Q‘
-0 _g f
- 15
0 5 4
kox +1 y

k0x+10y

Fig. 1 (Color online) Solitary and traveling wave solutions for F = dn as functions of time. Inten-
sity |u|? for a, = 0 (a—c) and a, = 0.2 (d—f) are presented as a function of kox + [,y and ¢ for p = =3,
p(2) = PycosQt and a,d M =097, [,=1b, e M=097,]y=—-1and ¢, f M =1, [, = —1. Coefficients:
by=0,e=0,ky=1Lwy=0,6=L fio=L foo=fip=0r=1s=—-1,g=1and 6 = -1

k0x+lgy kox+lo.V
Fig.2 (Color online) Traveling wave solutions as functions of time. The parameters are the same as

in Fig. 1b except a, =0.2in (d-f) and a, d fio=f_,0=1 foo=0b, e fio=fw=1 f.p=0and ¢, f
fo=lo=fo=1
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k0x+l,;y

Fig.3 (Color online) Traveling wave solutions as functions of time for Case 2. The parameters are the same
as in Fig. Ibexcepts=1,q, =0.2in(d-f)anda,dn =0,b,en=landc,fy =0and F = sn

In all of these solutions, the novelty comes from the presence of chirp. The previ-
ous papers dealing with solutions using expansion methods or related methods, such as
Refs. Ebadi and Biswas (2011), Jafari (2012), Yildirm (2012) and Yan (2003) all utilize
a linear dependence of the phase on the transverse variables. In addition, we have dem-
onstrated that any function satisfying Eq. (7) can be used to construct solutions to the
DS system of equations.

In all these solutions we’ve set g, = 0. However, you can add an arbitrary function of
time to g, and as a consequence to n. The only restriction is that there is no dependence on
the transverse variable. Thus, a large range of possible forms for 7 is possible.

5 Conclusion

To sum up, we analyzed the Davey—Stewartson system and obtained large new classes of
solitary and traveling wave solutions using the JEF expansion method. We obtained large
classes of new solutions, both solitary and traveling wave solutions and both with and with-
out chirp. Since the DS system appears in many areas of physics, there is a good possibility
of practical application for these solutions.
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Abstract. In this paper, the Jacobi elliptic function (JEF) expansion method is
applied to the system of equations governing nematic liquid crystals with a cubic-
quintic nonlinearity. Solutions that are first order polynomials of the JEF's for the wave
function and second order for the angle function are obtained. The solutions impose
constraints on only two parameters and include a wide range of functions. Both solitary
and traveling wave solutions are possible, as well as solutions both with and without
chirp.

Key words: Jacobi, nematic, liquid, crystal, photonics

1. INTRODUCTION

Nonlinearities in optics are studied perhaps more than most other nonlinear system as
there is a pressing need to support application in optical communications [1]. In
particular, nonlinear behavior may be well controlled and defined by different kinds of
optical materials such as nematic liquid crystals (NLCs) that have been recently produced
and studied [1, 2]. Nematic liquid crystals are extremely versatile materials with a large
range of practical uses in modern photonics [1]. They are an important system in
nonlinear optics as they allow the study of many nonlinear phenomena at low power due
to a very large nonlinear response via the light-induced reorientation of the NLC
molecules [2], in particular the study of spatial solitons, which when propagating through
NLCs are also known as nematicons [3]. The study and modeling of the behavior of
nematicons, in particular finding the exact solutions describing their form, has numerous
potential practical applications, such as optical information processing [4], molding of
optical waveguides [5], beaming and control of the so-called random lasers [6] and many
others [7,8].

NLCs are generally described by a pair of interconnected nonlinear differential
equations describing the time evolution of the wave function of light and the angular
function which describes the tilt of the molecules of the crystal [9]. There are several
forms of nonlinearity which can occur in the second equation determining the angular

© 2024 by University of Nis, Serbia | Creative Commons License: CC BY-NC-ND
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function. The most common form of nonlinearity studied is the third-order nonlinearity,
also known as the Kerr nonlinearity [9]. Several papers have produced solutions for the
NLC system of equations (NLCSOE) with Kerr nonlinearity and basic solitary wave
solutions have been obtained [10-12]. This paper will focus on the NLCSOE with the so-
called cubic-quintic nonlinearity.

Cubic quintic nonlinearity is a form of nonlinearity where the third and fifth order
nonlinearities compete against each other [13]. It has emerged as an important topic of
study in nonlinear optics due to the possibility of stabilizing solitary wave solutions with
multiple transverse dimensions due to the competing signs of nonlinearities [14]. Several
papers have used various techniques, such as the trial equation method [15], the sinh-
Gordon expansion method [16] and others [9, 17-19] to find solutions for the NLCSOE
with a cubic-quintic nonlinearity, often referred to in the papers as the parabolic law [17].

Recently, there has been a lot of progress in applying the JEF expansion method to
find solutions to the Nonlinear Schrodinger equation with various forms of nonlinearity
[20-22], as well as the Gross-Pitacvskii equation [23-24]. The method has also
successfully been applied to two-component systems such as the Davey-Stewartson
equation [25] and the two-component NLSE [26]. The first application of the JEF
expansion method on NLCs was made in [27] where solutions were found for the NLC
system of equations with a third-order nonlinearity.

In this work, we generalize the Jacobi elliptic function (JEF) expansion method that
was developed in [22] and [27] to find exact solutions to the NLC system of equations
(NLCSOE) for the cubic-quintic (CQ) nonlinearity. As in [27], we apply the principle of
harmonic balance to both the wave function and the angular tilt and apply matching
conditions to obtain the polynomial degrees of these two functions in terms of the JEF.
These degrees will depend on the degree of the nonlinearity inside the liquid crystal and
it turns out will differ from the degrees obtained in [27].

2. METHOD

The NLCSOE for the CQ nonlinearity has the general form as follows [9]:
iu, +§uxx+)(pu=0, (1

CDxx + Ip + 1 Jul® + azlul* =0, ®)

where u is the wave function, p is the angle function determined by the orientation of
NLCs, f is the diffraction parameter, y is the coupling parameter, ¢ and / are parameters
describing the strength of the non-local response of the NLCs and a; and a, are
parameters determining the strength of the nonlinear response to the propagating light. In
the special case where the parameter ¢ is equal to 0, the system of equations reduces to
the standard cubic-quintic NLSE.
Following [22], the function  is split into the real and imaginary parts:

u = Ae'P, 3)
where A is the amplitude and B is the phase of the solution. Plugging in the equations and
splitting the real and imaginary parts we obtain:

Ac+5(24,B, + 4B,,) = 0, )
—AB, +£(24,, + AB}) +xAP = 0, )
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CPyx + Ip + 1A% + a,A* = 0. 6)
We now assume the following forms for 4 and B:
A=fi(OF(®) + f1(OF1(8), (7
0 =k(t)x + w(t), )
B =a(t)x?+ b(t)x + e(t), )
where F is a Jacobi elliptic function satisfying the following differential equations:
2
&= oo+ ;F2 + ¢ F* and 7 = ,F +2,F?, (10)

where ¢y, ¢, and ¢, are coefficients that depend on the choice of the Jacobi elliptic
function and the so-called JEF parameter M. For F=dn we have c¢y=M-1, ¢,=2-M and
¢4=-1, while for F=sn we have c,=1, c,=-(1+M), c,=M. The remaining parameters f;, f.;,
k, w, a, b and e are functions of time to be determined. We note that the phase contains
the quadratic term a with respect to the transverse variable that is known as the chirp
[20].

We now apply the matching principle to find the needed degree of F in p. Since in Eq.
(7), the highest degree of F'is 3 in the term A,.,, the matching conditions indicate that the
degree of AP should also be 3 and, therefore, the angle function p should be a second
order function of F*

P = g2(t)F? + go(t) + g_(OF 2. (11)
The terms of odd degree are omitted because they add too many new equations without
any benefit. It is worth noting that for the ordinary Kerr nonlinearity the matching
conditions imposed second degree functions in F for both 4 and p [27].

We now plug Egs. (7-9) and Eq. (11) into Egs. (4-6) to obtain a polynomial function
of F. Taking care to equate each coefficient of the polynomial to 0, we obtain a series of
algebraic and ordinary differential equations:

fotaBfi=0, i=1,-1 (12)
a; +2a*B =0, (13)
b, + 2abB = 0, (14)
k, + 2akB = 0, (15)
w; + bkB = 0. (16)

For the parameter e, we obtain a pair of equations that will have to be equivalent, i.e.
matched, for the solution to be valid:

1 1 .
—eifi =5 BD?fi + Xfigo + Xf-i9zi + B2 fik? =0, i =1, —1. (17)
Finally, we obtain several additional constraits between parameters which can be thought
of as integrability conditions:

Xfig2i + Bearifik? =0, i=1, -1, (18)

o ft +6ccy,:9,k*=0,i=1, -1, (19)

o f2 Ao, f3f + dccygaik? + gl =0, i =1, -1, (20)
20 fifoq + 60,22 + 2ccogak? + 2cc,g_sk? + gol = 0. (21)

We now proceed to solve Eqgs (12-21). Solutions to Egs. (12-16) are obtained using
standard techniques and are as follows:

fi = fion, 22)
a=aym, (23)
b= byn, 24)

k = kon, (25)
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® = 0o — boken [ Bdt, (26)

where 1 = is the so-called chirp function [17]. In the absence of chirp, i.c.

1+2a, [} Bdt
ap, =0, we haven = 1.

Without loss of generality, we can now assume f; # 0.For f_; = 0, we obtain
g, = 0 from Eq. (17) for i = —1. From solving Egs. (18)-(21), we obtain:

- K2
g, = T2, @7
6Bccyk*
= . 2
“ = 28)
2
L= 3;‘;; (4ccyk? + 1), (29)
2 k*
go = 2 (30)
For f_; # 0, from matching the two equations for e in Eq. (17), we obtain:
f19-2 _ f-192 31)
f-1 fi
and therefore since:
— K2
g, = T2, (32)
- K2
g = 25, (33)
we obtain:
Li_e ] e=+1. (34)
f Ca
The formula for a, is the same as in Eq. (28). The remaining formulas are:
Bcyk?
o = Xlez(élckz(cz —6€/cocy) + 1), (3%)
2
Jo = 2BC—""(CICZ (co(l + 7€?) — 4€C2F) — el C—O). (36)
Xl [ Ca

As can be seen, the solutions impose constraints on only two parameters, o; and o,
while the remaining parameters S, y, ¢ and /, are completely arbitrary. This allows for a
wide range of flexibility in constructing our solutions. Finally, the formulas for e in both
cases will be complicated and dependent on the form of f, y, ¢ and / chosen.

3. RESULTS

We now present the solutions we obtained with this method. We will first select F=dn
for our Jacobi elliptic function. This function is convenient because the reciprocal
function F=nd doesn’t contain singularities, thus allowing us to obtain novel nonsingular
solutions for non-zero €.

In Fig. 1a we see a standard bright solitary wave solution. The position can be altered
by changing @, and the extent of oscillations can be controlled by changing b,. We see in
Fig. 1c that the NLC acts as a wave guide for the signal. In Figs 1b and d we see the
effects of the chirp function. The chirp function will deform the solution in the transverse
direction and introduce oscillations in the amplitude. Solitary waves with such
oscillations in amplitude are often called breathers. Since ¢,=0 for M=1, from Eq. (34)
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we have f;=0 and therefore we do not have any solutions for M=/ which combine F=dn

and F=nd.
(a) (b)
ju]? — w2 T
1.0 7

0.5
0.0.

1.0 % "
pa-2 _ .

i 0 |
-0.5 ‘5-10 '11. 10
=1.0. AN : 5

0 0 :
5 . _50 kD X 5 _50 ko X
10 < 0
t 15~10 ¢ 15710

Fig. 1 Bright solitary wave solutions to the NLCSOE as a function of kyx and ¢ for
F=dn, B(t) = Bocos(2t) and M=1. Graphs (a), (b) depict the square of the angle
function |u|? and graphs (c), (d) depict the angle function p. The values of the parameters
are: Bo=R=kog=by=f1p=l=c=x=1, wg =€y =€ =0and (a),(c):ap =0,
(b),(d): ap = 0.2.
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(@ (b)

10

0 Ky x
=5 0

15710

Fig. 2 Traveling wave solutions to the NLCSOE as a function of kyx and ¢ for M=0.9,
ay = 0. Graphs (a), (b), (c) depict the square of the angle function |u|? and graphs (d),
(e), (f) depict the angle function p. We have for (a),(d): € = 0, (b),(e): e=1, (¢),(f): e=-1.
All the other parameters are the same as in Fig. 1.

In Fig. 2, we see the periodic, so-called traveling wave, solutions to the NLCSOE. For
M<1, the JEF no longer produces a solitary wave but a periodic wave structure. We see
that both the wave and the angle functions (Figs 2a and 2d) become periodic in the
transverse direction. In Figs 2b, c, e and f we see the effects of a non-zero value of €. We
see that the overall effect of combining F=dn and F=nd is to double the periodicity of the
solutions. The variation of the angle functions also becomes more prominent in the
longitudinal direction. Solutions in Fig 2b and Fig 2c are qualitatively alike except for the
shift in the overall background amplitude due to the sign of €. The forms of the angle
function p are, however, far more complicated and the two solutions in Fig 2e and Fig 2f
are quite different from each other.
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=5
15—10

t1b

Fig. 3 Traveling wave solutions to the NLCSOE with chirp as a function of kyx and ¢
for M=0.9, ay = 0. 2. All the other parameters are the same as in Fig. 2.

In Fig. 3 we see the effects of chirp on the traveling wave solutions. The wave fronts
in Figs 3a, b and c are stretched out in the transverse direction and no longer periodic.
The more one deviates from an equilibrium point which is near the axis, the more
extreme the stretching of the wave front. We also note that the solutions in Fig 3b and Fig
3c are no longer qualitatively alike due to the disruption of symmetry caused by the chirp
function. In Fig 3d we see the effect of chirp on the angle function. One can clearly see
the orientation of the wave crests change with the change in the transverse variable. This
is less noticeable in Figs 3e and f where there is a strong background component coming
from g.

Finally, in Fig 4, we see the dark soliton solutions to the NLCSOE where we have
used the JEF F=sn. The standard dark solitary wave solution is shown in Fig 4a. We note
the periodic structure of the angle function in Fig 4b in the presence of the background
with almost a small deviation from it that produces the dark solitary wave. In Fig 4b we
see that the background of the solution is affected by the chirp. There is a similar effect
on the angle function in Fig 4d of pushing the wave to one side as in Figs 3d, e and f.
Lastly, we see an example of the traveling wave solution for the dark solitary wave in
Figs 4c and f. We see, unlike F=dn in Fig 2a, that F=sn reaches 0 and therefore including
non-zero € would produce singularities. We see the structure in Fig 2d that produced a
dark solitary wave now repeated periodically in Fig 2f.
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(a) (b)_ (c)

15—10 15710

Fig. 4 Dark solitary wave solutions to the NLCSOE as a function of kyx and ¢ for
F=sn. All the other parameters for (a), (b), (d), (e) are respectively the same as in Fig.
1(a), (b), (c) and (d). All the other parameters for (c) and (f) are respectively the same as
in Fig 2(a) and (d).

4. DISCUSSION

We now compare the presently obtained results with the previous results obtained in
other papers. In [9], the authors apply a simple ansatz to obtain the basic A=sech solution
for the amplitude corresponding to the bright solitary wave for M=1. In [16], the sinh-
Gordon expansion method is applied and various forms of hyperbolic trigonometric
functions are obtained for the wave function, although it has to be mentioned that the
form for the angle function is not necessarily related to the wave function. In [17], the
exp(-p) method is applied and a couple of solutions are obtained, usually in the form of a
fraction with a complicated denominator. In [18], the so-called simple equation method is
applied. Solutions for the amplitude of the form tanh and coth are obtained as well as
various ratios of exponential functions. In [19], two solutions are obtained based on the
F=tan and the F=tanh function.

In [28], the Lie point symmetry method is applied to the dual-power law nonlinearity
which reduces to the cubic-quintic nonlinearity for n=1/ and several solutions related to
the csch, sec and cos functions are obtained. In [29], the W-shaped solutions, which occur
in the case of Kerr nonlinearity [27], are studied using the general exponential rational
function method and some solutions for the case of the parabolic nonlinearity are
obtained. The exponential rational functions that are used to construct both the wave and
angle functions are ratios of either exponential or trigonometric functions. In [30], the
Kudryashov’s approach and the tanh—coth technique are used to construct solutions for
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various nonlinearities, including parabolic nonlinearity. Finally, in [15] large classes of
solutions are obtained although typically they also involve complicated expressions in the
denominator, usually some form of a function plus constant terms. Several solutions
involving hyperbolic trigonometric functions are obtained and there is even one mention
of the Jacobi sn function squared, albeit in one such denominator.

There are several advantages to the methods in this paper. First, the method is
conceptually simple and doesn’t require many complicated parameters like in the other
approaches. Second, the method works for arbitrary functions of 3, y, ¢, /, a; and a, with
respect to time, whereas the previous papers treat these functions as constant parameters.
This allows greater flexibility in the study of various NLC systems, especially those that
employ dispersion management. We note that our method is completely applicable to the
case where f3, x, ¢, [, a; and a, are arbitrary constants in the case of no chirp. The only
difference in this case is that constraints are then imposed on & and f; via Eqs (28)-(29).
Third, the JEFs are extremely flexible functions, containing both solitary and periodic
waves. By varying the choice of the JEF and the parameter M, many different qualitative
forms of solutions can be obtained. Finally, no previous paper covers solutions with
chirp, which is an important phenomenon in understanding pulse propagation.

Here we will briefly discuss the limitations of the method. First, the method is limited
by the forms of functions that satisfy Eq. (10). The functions satisfying (10) either have a
solitary wave or are periodic. Modeling multiple, but finite, number of waves is difficult
with this method. Second, as mentioned before, the method is not applicable for a
completely arbitrary set of parameters, but does have two constraints. Finally, the form of
the free parameter e in the phase is complicated and needs to be calculated for each set of
functions individually because the form of the differential equations in (17) will greatly
differ based on the forms of f, y, ¢ and /. Nevertheless, for most practical applications
only the amplitude of u is needed.

5. CONCLUSION

We applied the Jacobi elliptic function expansion method to the NLC system of
equations with a cubic quintic nonlinearity and obtained abundant classes of solutions to
the system. Both solitary and traveling wave solutions were obtained, as well as solutions
that contain chirp. In particular, the second derivative of the angle function allowed the
wave function to have a better match with the degree of nonlinearity in the system. In
addition, the fact that there are only two constraints in the system allow systems of NLCs
to be flexibly tuned to allow the propagation of the wave function through them. This
could potentially have many applications in the fields of photonics and nonlinear optics.

There are many potential systems to which this method can further be applied,
including two-component NLC systems and NLC systems with different forms of
nonlinearity, especially the so-called septic (seventh order) nonlinearity.
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liquid crystals using the Jacobi elliptic function expansion method

Nikola Petrovic'?
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Abstract

Nematic liquid crystals (NLCs) are an important system in nonlinear optics as they allow the study of many nonlinear
phenomena at low power due to a very large nonlinear response via the electro-optic effect [1]. In particular, spatial
solitons, also known as nematicons [2], can easily be observed in NLCs and have shown to be remarkably stable in the
two transverse dimensions [3]. NLCs are generally described by a pair of interconnected nonlinear differential equations
governing the behavior of the wave function of light and the angular tilt of the molecules of the crystal [4]. Various
methods have been proposed to solve this system of differential equations, including the tan(g/2)-expansion method [5],
the modified simple equation method [6] and others [4,7].

In this work, we generalize the Jacobi elliptic function (JEF) expansion method, developed in [8] and [9], to find exact
solutions to the NLC system of equations. We apply the principle of harmonic balance to both the wave function and
the angular tilt and apply matching conditions to obtain the degrees of these two functions in terms of the JEF. These
degrees depend on the form of the nonlinearity inside the liquid crystal. Unlike many other models, the form of the wave
functions given in [8] and [9] also includes a quadratic dependence on the transverse variables in the phase which is
known as the chirp. Solitary and travelling wave solutions to the NLC system of equations are obtained, both with and
without chirp.
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PREFACE

This book contains some papers related to the talks presented at
the 2nd Conference on Nonlinearity, held online on October 18-22,
2021. The conference is organized by the Serbian Academy of Non-
linear Sciences (SANS) in cooperation with the Mathematical Insti-
tute (Serbian Academy of Sciences and Arts), Faculty of Mathematics
(University of Belgrade), Institute of Chemistry, Technology and Met-
allurgy (University of Belgrade), and Faculty of Sciences and Mathe-
matics (University of Nis).

It is well known that nonlinear phenomena and processes are present
everywhere in nature — from fundamental interactions between elemen-
tary particles, via various terrestrial processes in fluids and optics,
to the dynamics of celestial objects and the evolution the universe
as a whole. Nonlinear methods, in particular nonlinear differential
equations, are used in research of all sciences — from fundamental to
applied. Contemporary comfortable human life largely depends on
technological achievements based on nonlinear processes.

Serbian Academy of Nonlinear Sciences is a scientific society whose
members are scientists that significantly contributed to developments
of nonlinear sciences in Serbia. The main goal of SANS is a strong
fruitful support to versatile developments of nonlinear sciences, partic-
ularly in Serbia. Organization of scientific meetings — colloquiums and
conferences on nonlinearity — are among principal activities of SANS.
SANS strives to connect as much as possible with scientists and re-
lated scientific activities throughout the world. More information on
the Serbian Academy on Nonlinear Sciences is available at its website
http://www.sann.kg.ac.rs/en/sans/.

About 70 scientists from 19 countries participated in this con-
ference (Australia, Austria, France, Germany, Hungary, India, Is-
rael, Japan, Poland, Qatar, Romania, Russia, Serbia, Slovenia, Spain,

\Y



UAE, UK, Ukraine, USA). Lectures were given by 4 keynote speak-
ers (45 min.), 9 invited speakers (35 min.) and 35 other partici-
pants (25 min.). Some details can be seen on the conference website
http://www.nonlinearity2021.matf.bg.ac.rs/.

On behalf of the Serbian Academy of Nonlinear Sciences, we would
like to express our gratitude to the Ministry of Education, Science and
Technological Development of the Republic of Serbia for a financial
support to publish these Proceedings. We are also thank the Coorga-
nizers and the management of the journal Symmetry for a support of
this conference. In particular, we are thankful to all speakers and the
authors of contributions to the Proceedings. We hope very much that
this collection of papers will be useful not only to participants of this
conference but also to all others who are interested in nonlinearity.

The Serbian Academy of Nonlinear Sciences plans to continue with
the organization of Conferences on Nonlinearity regularly with a pe-
riod of two years. It is our great wish that next year there will be no
problem with the Corona virus epidemic and that the third conference
will be held in person. We will be happy to see all participants of the
first two conferences again, as well as many new ones.

Belgrade, Summer 2022
Editors

Branko Dragovich
(President of SANS)

Zeljko Cupic
(General secretary of SANS)
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Exact traveling and solitary wave solutions to the
generalized Gross-Pitaevskii equation with
cylindrical potential*

Nikola Petroviéf
Institute of Physics, Pregrevica 118, 11080 Belgrade,
University of Belgrade, Serbia

ABSTRACT

In our paper we modify the Jacobi Elliptic function (JEF) expan-
sion method to obtain solutions to the Gross-Pitaevskii equation with
a cylindrical potential, in which case the three transverse dimensions
are no longer symmetric. The solutions end up combining the features
of the solutions for the spherical potential and the solutions of the or-
dinary Nonlinear Schrédinger equation (NLSE). Solutions which have
an oscillating amplitude and modulational stability can be found.

PACS numbers: 05.45.Yv, 42.65.Tg

1. Introduction

Gross-Pitaevskii equation (GPE) is of the extreme importance in the study
of the Bose-Einstein condensates (BEC), where it describes the behavior of
the condensate wavefunction [1]. It has been introduced independently by
Gross [2] and Pitaevskii [3] for an unrelated problem, but has since been
found of great use in the study of BEC. Solitary wave solutions [4] have
been discovered in GPE. One of the main methods of finding approximate
solutions to the GP equation and related equations such as the Ginzburg-
Landau equation is using the variational approximation [5, 6, 7]. Such an
approach uncovered various complicated forms of solutions such as vortices
[5], dipoles [6], tripoles [6] and various oscillating structures [7]. In [8] exact
analytic solutions for the (1-1)D solutions to the GPE were found. The gain
function was used in the diffraction coefficient to produce stable oscillating
solitary wave solutions. The paper introduces many novel ideas, such as
the chirp function for which in order to obtain it one must solve a Ricatti

* Work at the Institute of Physics is supported by project OI 171006 of the Serbian
Ministry of Education and Science. Work in Qatar was done under the Qatar National
Research Fund (QNRF) project: NPRP 8-028-1-001.

te-mail address: nzpetr@ipb.ac.rs
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differential equation. The paper obtains stable oscillating solutions for
constant potential, but a complicated form for the nonlinearity coefficient.

Recently, a new class of solutions based on the Jacobi Elliptic Function
(JEF) expansion [9, 10, 11] for the Nonlinear Schrédinger Equation (NLSE)
and the methods used have been generalized in [12, 13] for the GPE. Unlike
in [8],in [9, 10, 11, 12, 13] the dispersion/diffraction coefficient is no longer
a constant and the gain function is factored differently into the formula for
the nonlinearity coefficient, among other differences in the parameters of
the solution. Having a non-constant dispersion/diffraction coefficient allows
the use of dispersion [14] and diffraction management [15]. The modula-
tional stability of the solutions in [9, 10, 11, 12, 13] for both the NLSE
and the GPE was analyzed in [16] and also [13] for both dark/bright and
spatial /temporal solitary waves, under both normal and anomalous disper-
sion. It was determined that in all three possible combinations the solitary
waves achieve either unconditional stability or stability under dispersion
management.

All the obtained solutions for the GPE have so far been for a potential
with spherical symmetry. However, other forms of the potential are possible
including ones that use trigonometric functions [17]. For many practical sit-
uations, confining potentials with cylindrical symmetry are used. In other
words, there is a confining potential only in two transverse dimensions,
reminiscent of an infinitely long cylinder [18, 19]. The elongated cylindrical
form of the potential allows experimental physicists to analyze the Bose-
Einstein condensate in a regime close to the 1D case [20]. In this paper we
extend the results in [12, 13] to the case of the cylindrical potential.

2. Method
We consider GPE in (3+1)D with distributed coefficients [1]:
. B(t) 2 2 o
10yu + 5 Au+ x()|ulu + a(t)(z* + y*)u = iy(t)u. (1)

Here ¢ is time, A = 92 + J; + 07 is the 3D Laplacian and a(t) stands for
the strength of the quadratic potential as a function of time. The functions
B, x, and ~ stand for the diffraction, nonlinearity, and gain coefficients,
respectively. All coordinates in Eq. (1) are made dimensionless by the
choice of coefficients. It is worth noting that the transverse variable z is no
longer symmetric with respect to the other two transverse variables = and

As described in Ref. [12], we separate the real and imaginary part of u:
u(z,y,2,t) = A(z,y,2,t) exp (iB(z, y, 2, t)). (2)

and, after plugging in Eq. (2) into Eq. (1), divide Eq. (1) into the real and
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imaginary part. We now assume the following form for A and B:
A HOFO) + f2(t)F(0) (3)
0 E(t)x +1(t)y +m(t)z + w(t), (4)
B = ai(t)(@® +¢?) + az(t)z® + bi(t)(x + y) + ba(t)z +e(t),  (5)

where f1, fo, k, I, m, w, a1, as, b1, by and e are functions of ¢ to be
determined, and F' is an arbitrary Jacobi elliptic function (JEF) satisfying:

dF\®
<dt9> = co + o F% 4 ey F4, (6)

where cg, co and ¢4 are constants that depend on the form of the JEF and
the parameter of the JEF M. For F' = cn, the JEF we will be using in this
paper, we have cg =1 — M, co =2M — 1 and ¢4 = —M. The JEFs are well
suited as an ansatz for nonlinear partial differential equations with terms
containing the third degree of the original function. Function f; may be
set to 0. In contrast to Ref. [12], the functions next to the quadratic and
linear terms in the phase have been split into two pairs of functions, a1, as,
b1 and bs to account for the asymmetry between z and the other transverse
variables.

Applying the F-expansion method and the principle of harmonic balance
[9] we obtain the following system of algebraic and first order differential
equations for f; (i = 1,2), a1, ag, b1, ba, k, [, m and w:

d .
Uiy ur v apr—vp = 0 (@
dk dl dm
E + 2ka15 = O, % —|— 2la1ﬁ = O, E + 2ma2,6’ = 0, (8)
day das
E+26a%—a20, EJrQBa% = 0, (9)
db, B dby B
oy T2Babi =0, —=+28aby = 0, (10)

‘fl—‘:+6((k+1)b1+mb2) = 0, (11)

d
LR - (R P mde) —3xhf = 0, (12

A (BE+P+mPea+xfE) = 0, (13)
fo (BUP+ 2+ mP)eo+xf3) = 0, (14)

3. Results

Now we need to classify solutions based on the forms of the functions «
and §. For the spherically symmetric form of «, the case where o and 8
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are constant was covered in Ref. [12], while the case where a and 3 are
sinusoidal was covered in Ref. [13].

Following the notation established in [13], we obtain the following most
general results:

¢
C
f1 = fiop1yv/p2exp </ th)7 fa=c¢ ifh (15)
0
k =piko, 1=pilo, m = pamo, (16)
w =wo — ((ko + lo)b10g1 + Mmob20q2) , (17)
a2 = P2a20, (18)
b1 = p1b1o, by = pabayo, (19)
1
e=eot g ((k§ +13)(c2 — 6ey/cocs) — 2b3) 1 + (20)

1
3 (m%(CQ — 6ey/cocy) — b%o) q2,

with a different formula for a1, p1, p2, ¢1 and ¢o in each case. Here, ¢ = 0, +1
and py corresponds to the chirp function in [10]. The index ’0’ represents
the value of the given parameter at ¢ = 0. The results in this section are
not for an arbitrary y, but one subject to an integrability condition:

x =Bk + 12 +m?)eaf 2 (21)

For the case where o and 3 are constants we obtain the following results:

a Celt —1
“ = et 22

ePt2(1 4 O) 1
R S VA - - 9
p 1+ Cert P27 T 2050817 (23)
(1+C)(ePt —1)
= 24
Bt
- 7 2
q2 1 —|—2a205t’ ( 5)

where C' = (\/%—&- alo)/(\/% —ayo) and p = 2v/2a0.

For the case where a and 3 are sinusoidal we obtain the following results,
ie. a(t) = agcos(Qt), B(t) = PLocos(2t) or a(t) = apsin(Qt), B(t) =
Bosin(2t) (in this case, ap and Sy stand for amplitudes, not initial values)
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we have the following results:

Qo

a; = 550 tanh (7(¢)), (26)
- / Q) - _ 1
1 = g — QG%OBO SeCh( (t>) , D2 1t 2(120 fot ﬂ(t)dt’ (27)
_ Vaobo ~aobo
Q= \/i(ao - 26%050) tanh (7(t)) 7{10 — 2a%0507 (28)
t
" Jo Bt)dt (20)

1+ 2a9g f(f 5(t)dt7

= arctan a % %& t
7(t) = arct h( 104/ ao) +4/ 5o /o B(t)dt. (30)

where:

For B(t) = popcos(Qt) we have fg Bt)dt = Bosin(Qt) and for B(t)
Bo sin(2t) we have fgﬁ(t)dt = B <1_C;);(Qt)

For this case we can perform a stability analysis similar to one in Section
5 of [16]. The key difference is that now we analyze stability for solitary
waves along the z direction as a separate case, and thus have two distinct
cases: kg = mg = 0, lp = 1 and kg = lp = 0, myg = 1. We also must
specify up front whether kg = mg =0, lg = 1 or kg =1lp =0, mg = 1
due to the fact that the formula for x now contains multiple terms, each
with different form of the chirp function. In Egs. (50) of [16] we must take
p= \/p%pg instead of p3/2. For kg = mg =0, l[p = 1 we must take p = p; in
Egs. (51)-(54) of [16], while for kg = lyp = 0, mp = 1 we must take p = po
in Egs. (51)-(54) in order to obtain the form of the GPE with constant
coefficients given in Eq. (55) of [16]. We have thus shown that the same
stability analysis given in [16] can also be performed on the solutions in
this paper. The detailed calculations pertaining to this analysis are beyond
the scope of the paper, but one obtains similar conclusions to those in [16]
for the NLSE and GPE with spherical potential (the latter also covered
in [13]). In any case, it can be concluded that the solutions in this paper
are either unconditionally stable or stable under the regime of dispersion
management. Computer simulations were performed on the solutions to
the NLSE in [10] and the solutions preserved their shape after long runs.

4. Solutions

In this section we analyze the forms of the obtained solutions. As in [12],
the solutions cannot be made to be of stable amplitude unless an external
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k0x+loy i 6

Figure 1: (Color online) Solitary and traveling wave solutions for F' = cn
as functions of time for « = 3 = 1. Intensity |u|? is presented as a function
of: kox + lpy for (a), (c¢) and (e) and myz for (b), (d) and (f). The main
parameters are: (a), (b): M =1, v =0; (c), (d): M =0.9, v=0; (e), ():
M = 0.9, v = p/2. The other parameters are: kg = lp = mg =1, ajo = 1,
(L20:0, b10=b20:1,620andw():0.
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gain is added, even in the absence of chirp. Due to the specific form of
the function, the dependencies of the function on kgz + lpy and mgz are
no longer qualitatively the same, hence these cases must be analyzed and
presented separately. The parameters p; and ps are qualitatively similar for
the case of constant « and 3, so there is not much of a physical difference
apparent when both are present. A more noticeable difference between
them occurs when asgy = 0.

In Fig. (1) we see the results for the case where o and 3 is constant. We
see in Fig. (1)(a) and (b) the difference in the two solitary waves, where
we have used M = 1 and F = cn. In both plots, the function decays,
i.e. spreads out, relatively quickly. The slight rightward bend is due to
parameters by and by being positive.

In Fig. (1)(c) and (d) we see the difference for traveling wave solutions,
i.e. when M < 1. We see that in Fig. (1)(c) the wave front spreads out, as
is the case in [12], while in Fig. (1)(d) the distance between the traveling
waves remains the same.

Finally, in Fig. (1)(e) and (f), we see the effects of adding artificial gain.
Unlike in [12], the value of « for stable solutions is v = p/2, due to the
change in the number of transverse variables. In order for the stabilization
to work, we must have agp = 0. In Fig. (1)(e), we see the dramatically
different effect in comparison with similar plots in [12]. Instead of a wave
front of stable intensity growing wider, we have a radical divergence of
initial waves, which are replaced by a giant oscillating wave whose first
period can be seen on Fig. (1)(e) and which repeats infinitely. On the
other hand, in Fig. (1)(f), we obtain a wave front that doesn’t spread
out and whose intensity converges to a certain value. The result in Fig.
(1)(e) indicates that the artificial addition of gain might not lead to stable
solutions in the case of the 2D potential.

In Fig. (2) we see the solutions for a = a cos(§2t) and f = By cos(Q2t),
where ag = By = 29 = 1. We see that the oscillatory solutions resemble
those in [13] and, as in Ref. [13], the chirp functions modulate the intensity
and the overall shape of the solutions. Here, each form of chirp affects
both solutions. This suggest that as in the case of the 3D potential, the
dispersion management might be a good approach towards finding stable
solutions.

5. Conclusion

To sum up, we have analyzed the problem of the GP equation for the 2D po-
tential, a scenario relevant for practical applications. We have determined
that the factors corresponding to the NLSE and the GP equation interact
with each other to produce novel and interesting solutions. We established
that the artificial gain approach in [12] does not give the same effect as for
the 3D potential. We also studied the solutions for the sinusoidal varia-
tion of v and S, in other words, the case under dispersion management,
and found that as in [13] one obtains stable solutions. Finally, while the
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(@) (b)

(d)

myg 50

Figure 2: (Color online) Solitary wave solutions for F' = cn as functions
of time for a = g cos(t) and S = By cos(t), where g = By = Qo = 1.
Intensity |u|? is presented as a function of: kozx + loy for (a) and (c) and
moz for (b) and (d). For (a), (b): aijp = azo = 0, and for (c), (d): ajp =
ago = 0.3. Other parameters are the same as in Fig. (1)(a).
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modulational-stability analysis of these solutions is beyond the scope of this
paper, work done in [13] and [16] is strongly indicates that these forms of
solutions are also modulationally stable.
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Spatio-temporal solitary and traveling wave solutions to the Kundu-
Mukherjee—Naskar equation

Nikola Zoran Petrovi¢!
‘Institute of Physics, Belgrade, Serbia
e-mail:nzpetr@ipb.ac.rs

Kundu-Mukherjee-Naskar (KMN) equation [1] is an important variant of the (2+1)-dimensional
Nonlinear Schrodinger equation for which the transverse Laplacian is replaced with a mixed partial
derivative and the derivative with respect to only one of the transverse directions in present in the
nonlinear term, thus breaking the symmetry between the two transverse directions. The primary
motivation for the development of the KMN equation was to study soliton pulses in (2+1)—dimensions
[2]. The KMN equation admits soliton and breather solutions and, due to an infinite number of
conserved quantities which can be established through Lax formalism, it can be established that the
equation is integrable [1]. Various methods can be used to find exact solutions to the equation, including
the extended trial function method [2], the semi-inverse method [3] and the new extended algebraic
expansion method [4].

In this work, we generalize the Jacobi Elliptic function expansion method, developed in [5] and [6], to
find exact solutions to the KMN equation. An ansatz which takes into account all asymmetries is
considered. One obtains both solitary and travelling wave solutions to the KMN equation, both with
and without chirp, which to the best of our knowledge was not considered in any of the previous papers.
Chirp is, however, only present in the perpendicular direction to the direction of the derivative in the
nonlinear term. These solutions could potentially have many practical applications in the continued
study of rogue waves [1].
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Solutions to nematic liquid crystals systems with cubic-quintic and septic
nonlinearities using the Jacobi elliptic function expansion method

N. Petrovi¢'?
!nstitute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
*Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

e-mail: nzpetr@ipb.ac.rs

Nematic liquid crystals (NLCs) are an important system for studying in nonlinear optics as these crystals
allow many nonlinear phenomena to be explored due to a very large nonlinear response via the electro-
optic effect [1]. In particular, spatial solitons, also known as nematicons [2], can easily be observed in
NLCs and these nematicons have shown to be remarkably stable in the two transverse dimensions [3].
NLCs are generally described by a pair of interconnected nonlinear differential equations governing the
behavior of the wave function of light and the angular tilt of the molecules of the crystal [4]. Of further
interest is to study systems with cubic-quintic [5] and septic [6] nonlinearities in order to precent the
well-known spatiotemporal collapse of the system when there are two or more transverse dimensions
[5]. Various methods have been proposed to solve the NLC system of differential equations, including
the tan(@/2)-expansion method [7], the modified simple equation method [8] and others [4,9].

In this work, we generalize the Jacobi elliptic function (JEF) expansion method, developed in [10] and
[11], to find exact solutions to the NLC system of equations with cubic-quintic and septic nonlinearities.
We apply the principle of harmonic balance to both the wave function and the angular tilt and apply
matching conditions to obtain the degrees of these two functions in terms of the JEF. For the cubic-
quintic nonlinearity the Jacobi function has a degree of 1, while for the septic nonlinearity it has a degree
of 2/3. Solitary and travelling wave solutions to the NLC system of equations with cubic-quintic and
septic nonlinearities are obtained, both with and without chirp, which is the quadratic dependence of
the phase of the solutions with respect to the transverse variables.
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The last twenty years have witnessed the emergence of a novell
branch in applied science: Quantum technologies. It relies on direct
applications of quantum mechanical laws for the design of quantum
communication and quantum information devices. Promising plat-
forms for realizing quantum technological devices are quantum meta-
materials: engineered media composed of many periodically arranged
artificial atoms-qubits. The systems currently extensively used for
designing operable quantum metamaterials include superconducting
circuits based on Josephson junctions. In this paper, we consider
the emergence of solitons in superconducting quantum metamaterial
comprised of aligned flux-qubits embedded within the two-stripe su-
perconducting microwave resonator. The propagation of electromag-
netic radiation within such a device is described by a set of coupled
equations for “atomic” and field variables. Due to the specific long-
range interaction of qubits with electromagnetic modes, we eliminate
field modes, and system dynamics is described by a set of nonlinear
Bloch equations possessing so-called soliton bullet or bubble solutions.
The possible practical realization of such solutions would be useful for
the achievement of control over light propagation. In particular, it
would be of interest for the construction of a delay line for buffering
applications.

Solitary and traveling wave solutions to the Nonlinear
Schrodinger equation describing quantum droplets

N. Petrovic!?

LUniversity of Belgrade, Belgrade, Serbia; nzpetr@ipb.ac.rs
2University at Qatar, Doha, Qatar;

The stabilization of 2-dimensional (2D) and 3D self-trapped lo-
calized modes for the nonlinear Schrédinger equation (NLSE) with a
cubic nonlinearity, which, unlike in the case of 1D, are unstable due
to critical and super-critical collapse [1], is an important topic in non-
linear optics research [2]. A recent study of the Gross-Pitaevskii (GP)
equation with the Lee-Huang-Yang correction [3] suggests adding to
the NLSE a fourth-order competing term in the 3D and the reduced
2D case [4] and a second-order competing term in the 1D case [5],

60



producing systems whose solutions are called quantum droplets due
to their long and flat plateau [2].

We generalize the Jacobi elliptic function (JEF) expansion method,
applied to the NLSE in [6], to find novel solutions to the NLSE in the
cubic-quartic and quadratic-cubic cases. In the first case, the maxi-
mum degree of the JEF is two-thirds, while in the second case it is
one, as in the cubic case [6]. Solitary and traveling wave solutions
are obtained, which can optionally also contain the second-degree de-
pendence of the phase on the transverse variables known as the chirp
[6].
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The conservative water wave problem has Hamiltonian structure if
at the very far away “vertical” boundaries the flux of the velocity po-
tential ¢ cancels out [1]. This integral condition, in practice, imposes
a constraint on the boundary conditions. The simplest choice is to
impose the integrand to be zero, that is let the volume of fluid to be
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Peny6nvka Cp6uja
MHUHUCTAPCTBO ITPOCBETE,
HAYKE U TEXHOJIOUIKOI' PA3BOJA
Komucuja 3a cruname HayuYHuX 3Bama

Bpoj: 660-01-00001/1301 = ]
10.06.2020. roxune
bBeorpaan

Ha ocHoBy umana 22. craB 2. umana 70. ctaB 5. 3aKkOHa O Hay4YHOUCTPAXKHUBAYKO]
nenatHocty ("Cnyx0enu rnacHuk Penybnuxe Cpouje", 6poj 110/05, 50/06 — ucnpaska, 18/10 u
112/15), unana 3. cr. 1. u 3. u unana 40. [IpaBunHMKA O MOCTYMNKY, HAYUHY BpeJHOBama M
KBaHTUTATUBHOM MCKa3WBarby HAYYHOHUCTPaXUBAUYKUX pesynrata HcrpaxuBada ("CnyxbeHu
rnacHuk Peny6nuke Cp6uje", 6poj 24/16,21/17 v 38/17) v 3axTeBa KojH je NOAHEO

Hucuwuiayw 3a ¢pusuxy y Beotpaody
Komucuja 3a cTuname HaydHHX 3Bama Ha ceiHuLM opxkanoj 10.06.2020. ronuHe, noHena je

OJUIYKY
O CTMIIAILY HAYYHOT 3BAIbA

Up Huxoaa Ileiuposuh

CTHYE HAYYHO 3Barbe
Buwu nay4ynu capaonux

y obyacTH IPUPOAHO-MAaTEMATUUKIX HayKa - (PU3UKa
O b P A3J OXEDBE

Huciuumyw 3a pusuxy 'y Beozpaoy

yTBpaMo je npeanor 6poj 563/1 on 17.04.2019. roauue Ha cenuun Hayunor seha MHcTHTYTA 1
nojHeo 3axTeB KoMucHjM 3a cTULAMke HAaydHHX 3Bama 3a JOHOWEE OANYKE O HCIYHEHOCTH
YCIIOBa 3a CTHLAFe HAay4yHOT 3Batba Buwu nayunu capaonux.

KoMucuja 3a cTvuarme HayuyHUX 3Bara je IO MPETXOAHO NPHOAB/HEHOM MO3UTUBHOM
MHLLbeY MaruuHor HaydHor oabopa 3a (pU3UKY Ha ceaHulM oxpxaHoj 10.06.2020. roaune
pasmarpana 3axXTeB M yTBpAMJA Ja MMEHOBaHU MCMymaBa ycjoBe U3 uiaHa 70. craB 5. 3aKoHa 0
HayuyHOMCTpaxuBaukoj aenarHocty ("Cnyx6enu rnacHuk Penybnuke Cpouje”, 6poj 110/05, 50/06
— ucnpaBka,18/10 u 112/15), unana 3. ct. 1. u 3. 1 unana 40. [IpaBuaHUKa O MMOCTYIKY, HAYUHY
BPEJHOBaka M KBAHTHUTATMBHOM HCKa3WUBakby HAYUHOUCTPAXKMBAUKHUX pPE3y/lTaTa MCTpakMBada
("Cnyx0enu rinacauk Peny6nuke Cpbuje", 6poj 24/16, 21/17 v 38/17) 3a cTULAme HAYYHOT 3Bama
Buwiu nay4unu capaonux, na je oagydunia Kao y UuspeLy oBe ouTyKe.

JoHoerseM OBe OJUTyKe UMEHOBAaHU CTHYE CBa MpaBa KOja My Ha OCHOBY e M0 3aKOHY
npynajajy.

Onnyky HOCTaBUTH TNOJHOCHOLYY 3axTeBa, HMMEHOBaHOM M apXWMBM MuHMCTapcTBa
NPOCBETE, HayKe M TEXHOJIOWIKOT pa3Boja y beorpany.
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